SRI SHRIDEVI CHARITABLE TRUST (R.)

- 18 Act

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

(An ISO 9001:2015 Certified Institution), Recognized by Govt. of Karnataka.

Sira Road, Tumkur - 572 106, Karnataka, India.

(Affiliated to Visvesvaraya Technological University &

Approved by AICTE, New Delhi Vide 06/06/KTK/ENGG/02/017 Dt. 27-05-2002) Phone: 0816 -2212629 / Principal : 0816-2212627 Tele Fax: 0816 - 2212628

e-mail :info@shrideviengineering.org , principal@shrideviengineering.org Website: www. shrideviengineering.org

Ref. No.: SIET/OFF/2018-19/ 1029

Date:18/07/2019

To, The Chairman Board of studies (BoS) Computer Science and Engineering VTU, Belagavi-560018

Sub: Proposed Suggestions for Proposed Syllabus 2018-Scheme of VTU Syllabus - reg.

With reference to the above subject, we are hereby enclosing the list of curricular gaps and the proposed suggestions for some courses in proposed 2018 Scheme / Syllabus of CSE Board of Studies, Visvesvaraya Technological University.

We highly recommend you to incorporate the following changes in the list and request you to consider those during the revision of the curriculum and syllabus by the university.

Thanking you

Prof. Shanmukaswamy C.V HOD, Dept. of CSE

Dr: Hemadri Naidu PRINCIPAL PRINCIPAL SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY TUMKUR - 572106

LIST OF CURRICULAR GAPS AND THE PROPOSED SUGGESTIONS :

Sl No.	Curricular Gaps and Proposed Suggestions	Course Faculty In Charge Signature
1	In 2017 scheme, Advanced JAVA and J2EE (17CS553) is offered as professional elective course. Since Java & J2EE is required for all the students do their final year projects, we suggest the board to consider it as Core Course during the revision of syllabus & scheme	1Gr
2	Web Technology & its Applications course is not having laboratory component as per draft 2018 syllabus, hence we request the board members to consider at least 20 Marks CIE for laboratory component along with the theory test.	B Lot.
3	In the present 17CS44 Microprocessor& Microcontrollers, students are studying only 8086 Architecture concepts along with ARM processor. We suggest BoS team to include Microcontroller & Embedded Systems as per the current trends of the industry requirements during the revision.	Hlm
4	In 17CS61 Cryptography Network Security and Cyber Laws, the concept of Cyber Security and practical aspect of these concepts are not discussed. We request you to consider these changes in future revision.	Gm
5	In 17CS754 Unix System Programming practical approaches are missing. We request you to consider it in future revise.	An -
6	In 17CS82 Big Data Analytics, the practical approaches of Hadoop concepts can be included.	X

Prof. Shanmukaswamy C.V. HOD, Dept. of CSE

Sri Shridevi Charitable Trust (R.)

IDEALINGINGIE OF ENGINEERING & LEGUNOLOGA

(Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi) Sira Road, Tumakuru - 572 106. Karnataka.

An ISO 9001:2015 Certified Institution

Phone: 0816-2212629 | Fax: 0816-2212628 | Email: info@shrideviengineering.org | Web: http://www.shrideviengineering.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Ref: SIET/2019-20/ECE/ 1130

12-08-2019

To

The Chairman Board of Studies (BOS)

Electronics & Communication Engineering VTU, BELGAVI

Respected Sir,

Sub: Suggestion for proposed 2018 scheme of VTU syllabus - Reg.

With reference to the above cited subject, it is herewith enclosed curricular gaps and the proposed suggestions for some courses in the proposed 2018 scheme / syllabus of Electronics & Communication Engineering board of Visvesvaraya Technological University, Belagavi.

We request you to kindly consider the following points during the revision of the curriculum and syllabus by the University.

Curricular Gaps and proposed suggestion:

We suggest the BOS member to add Power Electronics Lab to III semester to 2018 scheme during the revision of scheme & syllabus.

Thanking You,

Head of the Department Electronics & Communication Engineering

> HOD Dept of E&C SIET, Tumkur-6

Principal SIET, TUMAKURU

PRINCIPAL SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY TUMKUR - 572106

			Outcome Based Education (OBE) and Ch (Effective from the acade	oice Based mic year 20	Credit S 18 – 19)	ystem (CBCS)					
Prog	ramme:	B.E: Electronics &	Communication Engineering				Alerica .				14/10/17	1
2			III SEMES	TER						-		
				ACCENTION OF	Teachin	ng Hours	s/Week		Exam	ination		
SI. No	(Course and Course Code	ind Course Title •		Theory Lecture	Tutorial	Practical/ Drawing	buration in hours	TE Marks	EE Marks	otal Marks	Control
					L	Т	P	9	0	a	Ē	
1	BSC	-18MAT31	Transform Calculus, Fourier Series and Numerical Techniques	Mathe matics	2	2		03	40	60	100	3
2	PCC	18EC32	Network Theory		3	2		03	40	60	100	4
3	PCC	18EC33	Electronic Devices		3	0		03	• 40	60	100	3
4	PCC	18EC34	Digital System Design		3	0		03	40	60	100	3
5	PCC	18EC35	Computer Organization & Architecture		3	0		03	40	60	100	3
6	PCC	18EC36	Power Electronics & Instrumentation		3	0		03	40	60	100	3
7	PCC	18ECL37	Electronic Devices & Instrumentation Laboratory			2	2	03	40	60	100	2
8	PCC	18ECL38	Digital System Design Laboratory			2	2	03	40	60	100	2
	12.9	18KVK39/49	Vyavaharika Kannada (Kannada for Communication)/			2			100			
	0	18KAK39/49	Aadalitha Kannada (Kannada for Administration)			2	364		100		1011	
9 Z OR		HSMC	2.18	ask. Sta		100		100	00 1			
	Constitution of India, Professional E	Constitution of India, Professional Ethics and Cyber		1			02	40	60		100	
	The second	18CPC39/49	Law		Examina	ation is b	y objectiv	e type qu	estions	A		
					17	10		24	420	480		
				TOTAL	OR	OR	04	OR	OR	OR	900	24
					18	08		26	360	540		

 Shribevi institute of engineering a technology

 (Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi)

 Sira Road, Tumakuru - 572 106. Karnataka.

 Phone: 0816-2212629 | Fax: 0816-2212628 | Email: info@shrideviengineering.org | Web: http://www.shrideviengineering.org

Sri Shridevi Charitable Trust (R.)

DEPARTMENT OF MECHANICAL ENGINEERING

Ref: SIET/2019-20/ME/ 14 a

13/08/2019

To

The Chairman Board of studies (BOS) Mechanical Engineering VTU Belagavi

Sub: Suggestions for Proposed Syllabus 2018 Scheme - VTU

With reference to the above cited subject, we have hereby enclosed a list of proposed suggestions for some courses in 2018 Scheme/Syllabus of Mechanical Engineering board of Visvesvaraya Technological University, Belagavi.

We highly recommend you the following changes in the list and request you to consider those during the revision of the curriculum and syllabus by the university.

Curricular Gaps and Proposed Suggestions

- 1. In Computer Aided Design and Manufacturing (18ME72), we suggest to add content on programming advanced CNC multi-axis machines, setting of tools, machine limits, capabilities, and safety.
- In 2018-19 scheme, Refrigeration and air conditioning is offered as professional elective course. Since these subjects is required for all the students for innovation. We suggest the board to consider it as core course during the revision of syllabus

Thanking you

HOD Mechanical Engineering h.U.D Dept. of Mechanical S.I.E.T., TUMKUR -6

SIET, TUMAKURU SHRIDEVI INSTITUTE OF

ENGINEERING AND TECHNOLOGY TUMKUR - 572106

Updated on 16.04.2020/28092020

Choice Based (Credit System (CBCS) and Out	tcome Based Education (OBE)	
COL	APUTER AIDED DESIGN AND	MANUFACTURING	No. 1 Contraction
Course Code	18ME72	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
 Course Learning Objectives: To impart knowledge of mathematical models. To make students to une CAM) leading to Computentities on display device To expose students to a Manufacturing Systems. To expose students to c 	CIM and Automation and dif derstand the Computer Appli ter integrated systems. Enabl es. utomated flow lines, assembl omputer aided process plann	ferent concepts of automation cations in Design and Manufac e them to perform various train ly lines, Line Balancing Techniq ing, material requirement plar	by developing turing [CAD / nsformations of ues, and Flexible nning, capacity
To expose the students To introduce the student 4.0 leading to Smart Fac Module-1 Introduction to CIM and Aut systems- types of automation, elements of a CIM system, C production capacity, utilization	to CNC Machine Tools, CNC p ts to concepts of Additive Ma tory. comation: Automation in P reasons for automating, Com AD/CAM and CIM. Mathem and availability, manufact	part programming, and industrianufacturing, Internet of Thing roduction Systems, automate nputer Integrated Manufactur natical models and matrices: turing lead time, work-in- p	al robots. s, and Industry ed manufacturin ing, computerize production rat rocess, numeric
problems. Automated Production Lines ar automated flow lines, buffer sto lines without storage, partial au fundamentals of automated ass Module-2	nd Assembly Systems: Funda brage, control of production li tomation, analysis of automa embly systems, numericals.	mentals, system configuration ine, analysis of transfer lines, a ated flow lines with storage but	s, applications, nalysis of flow ffer,
CAD and Computer Graphics S	oftware: The design process	s, applications of computers in	n design, softwa
configuration, functions of grap	hics package, constructing th	e geometry.	
Transformations: 2D transforma concatenation, numerical probl	ations, translation, rotation and ems on transformations.	nd scaling, homogeneous trans	sformation matri
Computerized Manufacture Pla Generative Systems, benefits of System, computer integrated p MRP system, working of MRP, Shon floor control Module-3	of CAPP, Production Planning production management sys outputs and benefits, Capa	Computer Aided Process Plann g and Control Systems, typica tem, Material Requirement P city Planning, Computer Aide	ning, Retrieval ar I activities of PF Ianning, inputs d Quality Contro
Flexible Manufacturing System types of FMS, FMS componen control systems, FMS planning Automatic parts identification s Line Balancing: Line balancing candidate rule. Kilbridge and b	s: Fundamentals of Group T ts, Material handling and st and design issues, Automa ystems and data capture. g algorithms, methods of I	Technology and Flexible Manu corage system, applications, b ated Storage and Retrieval Sy ine balancing, numerical pro	facturing System enefits, comput stems, AS/RS an oblems on large

Updated on 16.04.2020/28092020

balancing, computerized line balancing methods.

Module-4

Computer Numerical Control: Introduction, components of CNC, CNC programming, manual part programming, G Codes, M Codes, programming of simple components in turning, drilling and milling systems, programming with canned cycles. Cutter radius compensations.

Robot Technology: Robot anatomy, joints and links, common robot configurations, robot control systems, accuracy and repeatability, end effectors, sensors in robotics. Robot programming methods: on-line and off-line methods. Robot industrial applications: material handling, processing and assembly and inspection.

Module-5

Additive Manufacturing Systems: Basic principles of additive manufacturing, slicing CAD models for AM, advantages and limitations of AM technologies, Additive manufacturing processes: Photo polymerization, material jetting, binder jetting, material extrusion, Powder bed sintering techniques, sheet lamination, direct energy deposition techniques, applications of AM.

Future of Automated Factory: Industry 4.0, functions, applications and benefits. Components of Industry 4.0, Internet of Things (IOT), IOT applications in manufacturing, Big-Data and Cloud Computing for IOT, IOT for smart manufacturing, influence of IOT on predictive maintenance, industrial automation, supply chain optimization, supply-chain & logistics, cyber-physical manufacturing systems.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Define Automation, CIM, CAD, CAM and explain the differences between these concepts. Solve simple problems of transformations of entities on computer screen

CO2: Explain the basics of automated manufacturing industries through mathematical models and analyze different types of automated flow lines.

CO3: Analyse the automated flow linestoreduce time and enhance productivity.

CO4: Explain the use of different computer applications in manufacturing, and able to prepare part programs

forsimple jobs on CNC machine tools and robot programming.

CO5: Visualize and appreciate the modern trends in Manufacturing like additive manufacturing, Industry 4.0 and applications of Internet of Things leading to Smart Manufacturing.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Automation, Production Systems and Computer-Integrated Manufacturing	Mikell P Groover	Pearson Learning.	4 th Edition,2015
2	CAD / CAM Principles and Applications	P N Rao	Tata McGraw-Hill	3 rd Edition, 2015
3	CAD/CAM/CIM	Dr. P. Radhakrishnan	New Age International Publishers, New Delhi.	3 rd edition
Referen	nce Books			
1	"CAD/CAM"	Ibrahim Zeid	Tata McGraw Hill.	
2	Principles of Computer Integrated Manufacturing	S.Kant Vajpayee	, Prentice Hall of India, New Delhi.	1999

Updated on 16.04.2020/28092020

ê

3	Work Systems And The Methods, Measurement And Management of Work	Groover M. P.,Pearson	Prentice Hall	Upper Saddle River, NJ, 2007.
4	Computer Automation in Manufacturing	Boucher, T. O., Chapman & Hall	London, UK,	1996.
5	Introduction to Robotics: Mechanics And Control	Craig, J. J.	Addison-Wesley Publishing Company	2 nd Ed 1989.
6	Internet of Things (IoT): Digitize or Die: Transform your organization. Embrace the digital evolution. Rise above the competition	Nicolas Windpassinger	Amazon.	
7	Internet of Things: A Hands-on Approach"	ArshdeepBahga and Vijay Madisetti	Universities Press	
8	Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing,	Ian Gibson, David W. Rosen, Brent Stucker		2nd Ed. (2015)
9	Understanding Additive Manufacturing	Andreas Gebhardt, Hanser Publishers		2011
10	Understanding Additive Manufacturing",	Andreas Gebhardt,	Hanser Publishers,	2011

Sri Shridevi Charitable Trust (R.) HRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

(Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi)

Sira Road, Tumakuru - 572 106. Karnataka.

An ISO 9001:2015 Certified Institution

Phone: 0816-2212629 | Fax: 0816-2212628 | Email: info@shrideviengineering.org | Web: http://www.shrideviengineering.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Ref: SIET/2019-20/ECE/115a

17-08-2019

To

The Chairman Board of Studies (BOS) Electronics & Communication Engineering VTU, BELGAVI

Respected Sir,

Sub: Suggestion for proposed 2018 scheme of VTU syllabus - Reg.

With reference to the above cited subject, it is herewith enclosed curricular gaps and the proposed suggestions for some courses in the proposed 2018 scheme / syllabus of Electronics & Communication Engineering board of Visvesvaraya Technological University, Belagavi.

We request you to kindly consider the following points during the revision of the curriculum and syllabus by the University.

Curricular Gaps and proposed suggestion:

We suggest the BOS member to replace Module - 4 & 5 from the syllabus of the V Semester Subject Principles of Communication Systems-18EC53, 2018 scheme with a Module covering Single Sideband modulation and a Module covering Vestigial Sideband modulation during the revision of 2018 scheme & syllabus. Since Module -4 & 5 is about introduction to digital communication that can be introduced in the next semester, the students get a good exposure to analog communication systems if SSB & VSB is introduced in detail.

Also we suggest the BOS members to add the Module-4&5 of the subject Principles of Communication Systems-18EC53, 2018 scheme to Digital communication-18EC61,VI semester subject, during the revision of 2018 scheme & syllabus.

Thanking You,

Head of the Department Electronics & Communication Engineering

> HOD Dept of E&C SIET, Tumkur-6

Principal SIET, TUMAKURU PRINCIPAL SHRIDEVI INSTITUTE OF "GINEERING AND TECHNOLOGY

PRINCIPLES OF COMMUNICATION SYSTEMS

Course Code	: 18EC53	CIE Marks: 40
Lecture Hours/W	/eek: 03 + 2 (Tutorial)	SEE marks: 60
Total Number of	Lecture Hours: 50 (10 Hrs / Module)	Exam Hours: 03
	CREDITS : 04	

Course Learning Objectives: This course will enable students to

- Understand and analyse concepts of Analog Modulation schemes viz; AM, FM, Low pass sampling and Quantization as a random process.
- Understand and analyse concepts digitization of signals viz; sampling, quantizing and encoding.
- Evolve the concept of SNR in the presence of channel induced noise and study Demodulation of analog modulated signals.
- Evolve the concept of quantization noise for sampled and encoded signals and study the concepts of reconstruction from these samples at a receiver.

Module-1

AMPLITUDE MODULATION: Introduction, Amplitude Modulation: Time & Frequency Domain description, Switching modulator, Envelop detector. (3.1-3.2 in Text)

DOUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: Time and Frequency Domain description, Ring modulator, Coherent detection, Costas Receiver, Quadrature Carrier Multiplexing. (3.3 – 3.4 in Text)

SINGLE SIDE–BAND AND VESTIGIAL SIDEBAND METHODS OF MODULATION: SSB Modulation, VSB Modulation, Frequency Translation, Frequency- Division Multiplexing, Theme Example: VSB Transmission of Analog and Digital Television. (3.5–3.8 in Text)

L1, L2, L3

Module-2

ANGLE MODULATION: Basic definitions, Frequency Modulation: Narrow Band FM, Wide Band FM, Transmission bandwidth of FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Stereo Multiplexing, Phase– Locked Loop: Nonlinear model of PLL, Linear model of PLL, Nonlinear Effects in FM Systems. The Superheterodyne Receiver (4.1 – 4.6 of Text)

L1, L2, L3

Module-3

[Review of Mean, Correlation and Covariance functions of Random Processes. (No questions to be set on these topics)]

NOISE - Shot Noise, Thermal noise, White Noise, Noise Equivalent Bandwidth (5.10 in Text)

NOISE IN ANALOG MODULATION: Introduction, Receiver Model, Noise in DSB-SC receivers. Noise in AM receivers, Threshold effect, Noise in FM receivers, Capture effect, 'FM threshold effect, FM threshold reduction, Preemphasis and De-emphasis in FM (6.1 – 6.6 in Text)

L1,L2,L3

Module-4

SAMPLING AND QUANTIZATION: Introduction, Why Digitize Analog Sources?, The Low pass Sampling process Pulse Amplitude Modulation. Time Division Multiplexing, Pulse-Position Modulation, Generation of PPM Waves, Detection of PPM Waves.(7.1 - 7.7 in Text)

L1,L2,L3

Module-5

SAMPLING AND QUANTIZATION (Contd): The Quantization Random Process, Quantization Noise, Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation (7.8 – 7.10 in Text),

Application examples - (a) Video + MPEG (7.11 in Text) and (b) Vocoders (refer Section 6.8 of Reference Book 1).

L1,L2,L3

Course Outcomes: After studying this course, students will be able to:

- 1. Analyze and compute performance of AM and FM modulation in the presence of noise at the receiver.
- 2. Analyze and compute performance of digital formatting processes with quantization noise.
- 3. Multiplex digitally formatted signals at Transmitter.
- Demultiplex the signals and reconstruct digitally formatted signals at the receiver.
- Design /Demonstrate the use of digital formatting in Multiplexers, Vocoders and Video transmission.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.

100

Sri Shridevi Charitable Trust (R.)

(Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi) Sira Road, Tumakuru - 572 106. Karnataka.

An ISO 9001:2015 Certified Institu

Phone: 0816-2212629 | Fax: 0816-2212628 | Email: info@shrideviengineering.org | Web: http://www.shrideviengineering.org

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Ref: SIET/2019-20/EEE/1166

17-08-2019

To

The Chairman Board of Studies (BOS) Electrical & Electronics Engineering VTU, BELGAVI

Respected Sir,

Sub: Suggestion for proposed 2018 scheme of VTU syllabus - Reg.

With reference to the above subject, we have proposed suggestions for some courses in the proposed 2018 Scheme/syllabus of Electrical & Electronics Engineering board Visvesvaraya Technological University, Belagavi.

We highly recommend you the following changes in the list and request you to consider these during the revision of the curriculum and syllabus by the university

Curricular Gaps and Proposed Suggestions

In 2018 Scheme, the Electric Vehicles Technologies(18EE646) is offered as professional elective course. We suggest the board to consider it as core course during the revision of scheme & syllabus

Thanking you,

G. H. R Head of the Department Electrical & Electronics Engineering

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

-Principal SIET, TUMAKURU PRINCIPAL SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOG. TUMKUR - 572106.

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI Scheme of Teaching and Examination 2018 – 19 Outcome Based Education(OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2018 – 19)

VI SE	MESTER										-	
					Teachin	ng Hours	/Week		Exami	nation		
SL No	Cou Cou	rse and rse code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Fotal Marks	Credits
					L	Т	P					
1	PCC	18 EE61	Control Systems	EEE	3	2		. 03	40	60	100	4
2	PCC	18 EE62	Power System Analysis - 1	EEE	3	2		03	40	60	100	4
3	PCC	18 EE63	Digital Signal Processing	EEE	3	2	-	03	40	60	100	4
4	PEC	18 EE64X	Professional Elective -1	EEE	3			03	40	60	100	3
5 .	OEC	18 EE65X	Open Elective -A	EEE	3 .			03	40	60	100	3
6	PCC	18 EEL66	Control System Laboratory	EEE	-	2	2	03	40	60	100	2
7	PCC	18 EEL67	Digital Signal Processing Laboratory	EEE	-	2	2	03	40	60	100	2
8	MP	18 EEMP68	Mini-project .				2	03	40	60	100	2
9	Internship		Internship	To be carried out during the vacation/s of VI and VII semesters and /or VII and VIII semesters.				VII				
		·		TOTAL	15	10	06	24	320	480	800	24

Note: PCC: Professional core, PEC: Professional Elective, OE: Open Elective, MP: Mini-project.

	Professional Elective -1					
Course code under18XX64X	Course Title					
18 EE641	Introduction to Nuclear Power					
18 EE642	Electrical Engineering Materials					
18 EE643	Computer Aided Electrical Drawing					
18 EE644	Embedded System					
18 EE645	Object Oriented Programming using C++					
18EE646	Electric Vehicles Technologies					
18EE647	Sensors and Transducers					

Open Elective -A

Students can select any one of the open electives offered by other Departments expect those that are offered by the parent Department (Please refer to the list of open electives under 18XX65X).

Selection of an open elective shall not be allowed if,

The candidate has studied the same course during the previous semesters of the programme.

The syllabus content of open elective is similar to that of the Departmental core courses or professional electives.

A similar course, under any category, is prescribed in the higher semesters of the programme.

Registration to electives shall be documented under the guidance of Programme Coordinator/ Advisor/Mentor.

Mini-project work:

Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini-project can be assigned to an individual student or to a group having not more than 4 students.

CIE procedure for Mini-project:

(i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the Mini-project work, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

(ii) Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all the guides of the college.

The CIE marks awarded for the Mini-project, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE for Mini-project:

(i) Single discipline: Contribution to the Mini-project and the performance of each group member shall be assessed individually in the semester end examination (SEE) conducted at the department.

(ii) Interdisciplinary: Contribution to the Mini-project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belong to.

Internship: All the students admitted to III year of BE/B. Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII semesters and /or VII and VIII semesters. A University examination shall be conducted during VIII semester and the prescribed credit shall be included in VIII semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.

CHOICE BAS	B. E. ELECTRIC SED CREDIT SYST	CAL AND ELECT EM (CBCS) AND SEMESTER	RONICS ENGINEERIN OUTCOME BASED ED – VI	G UCATION (OBE	5)
ELE	CTRIC VEHICLE	TECHNOLOGIE	(PROFESSIONAL EL	ECTIVE)	
Course Code		18EE640	CIE Mar	ks	40
Teaching Hours/Week (L	:T:P)	(3:0:0)	SEE Mar	ks	60
Credits		. 03	Exam Ho	ours	03
Course Learning Obi	ectives:				
To understand worki	ig of Electric Vehi	cles and recent tre	nds.		
Ability to analyze dit	ferent power conve	erter topology use	for electric vehicle apr	lication.	
Ability to develop th	electric propulsio	n unit and its cont	rol for application of ele	ctric vehicles.	
Ability to design con	verters for hattery (harging and expla	in transformer less tone	logy	
- Ability to design con	verters for battery c	ind ging and expansion	un transformer fess tope	105).	-
Module-1					
Electric and Hybrid H	lectric Vehicles: (Configuration of	Electric Vehicles, Perf	ormance of Elec	etric
Vehicles, Traction m	otor characteris	tics, Tractive e	ffort and Transmi	ssion requirement	nt,
Vehicle performance	Tractive effort	in normal driv	ing, Energy consumpt	ion Concept of	f Hybrid
Electric Drive Trains	Architecture of	Hybrid Electric I	Drive Trains, Series H	vbrid Electric Dr	rive Trains.
Parallel hybrid electric	drive trains	· · · · · · · · · · · · · · · · · · ·			
Module 2	unite trains.				
Would-2					
Energy storage for E	v and HEV: Energy	gy storage requir	ements, Battery paran	ieters, Types of	Batteries,
Modelling of Battery,	Fuel Cell basic prin	nciple and opera	tion, Types of Fuel	Cells, PEM	FC and
its operation, Modellin	g of PEMFC, Supe	ercapacitors.			
Module-3					
Electric Propulsion: H	V consideration, D	C motor drives an	nd speed control, Inducti	on motor drives,	Permanent
Magnet Motor Drives,	Switch Reluctance	Motor Drive for El	ectric Vehicles, Configu	ration and contro	l of Drives.
Module-4		12.00			
Design of Electric an	Hybrid Electric	Vehicles: Series	Hybrid Electric Drive	Train Design	Operating
natterns control strat	egies Sizing of	maior componer	ts nower rating of trac	tion motor now	er rating of
angina/ganaratar dasia	n of DDS Darollal U	wheid Electric Dri	us, power rating of trac	l stratagias of par	allal hubrid
drive train design of a	non nover conceit	yonu Liectric Dri	ie meter drive conceitu	transmission das	ion anona
drive train, design of er	igine power capacit	ty, design of electr	ic motor drive capacity,	transmission des	ign, energy
storage design.					
Module-5					
Power Electronic Co	averter for Batter	y Charging: Char	ging methods for batter	y, Termination m	lethods,
charging from grid, Th	e Z-converter, Isola	ated bidirectional	DC-DC converter, Desig	gn of Z- converte	r for
battery charging, Hi	gh-frequency trans	sformer based is	olated charger topology	, Transformer les	s topology.
Course Outcomes: At	the end of the cour	se the student wil	l he able to:		
· Evolain the working	of electric vehicles	and recent trende			
A polyzo different po	of electric venicles	and recent trends	mia vahiala annliaction		
Analyze different po	wer converter topol	logy used for elec	ric venicle application.		
• Develop the electric	propulsion unit and	its control for ap	plication of electric vehi	cles.	
 Design converters for 	r battery charging a	and explain transfo	ormer less topology.		
Question paper patte	n:	•			
 The question paper 	er will have ten ful	Il questions carryin	ng equal marks.		
 Each full question 	n will be for 20 ma	rks.			
There will be tw	full questions (wi	th a maximum of	four sub- questions) from	m each module	
Each full question	n will have sub	action covaring a	the topies under a mas	hula	
The stal use it	have sub- qu	estion covering a	r the topics under a mot	iule.	
 The students will 	have to answer five	e full questions, s	electing one full question	n from each mod	lule.
SI No	Title of the Book		Name of the Author/s	Name of the Publisher	Edition and Year

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	books	- 		1. J. 10. 00
1	Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals,	M. Ehsani, Y. Gao, S. Gay and Ali Emadi	CRC Press	2005

An ISO 1501:2015 Certified Institution

DEPARTMENT OF CIVIL ENGINEERING

(Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi) Sira Road, Tumakuru - 572 106. Karnataka.

Ref: SIET/CV/2019-20/115c

Date: 17/08/2019

To,

The Chairman Board of Studies Civil Engineering VTU, Belgavi.

Sub: Proposed suggestion for proposed syllabus 2018- scheme of VTU Syllabus- reg

With reference to the above subject, we have hereby enclosed a list of curricular gaps and the proposed suggestions for some course as of proposed 2018 scheme/ syllabus of civil engineering board VTU, Belagavi.

We highly recommend you the following changes in the list and request you to consider those during the revision of the curriculum and syllabus by the university.

Thank you,

Encl : Circular Gaps and Proposed Suggestions

naheshk

Head of the Department Civil Engineering HOB Dept. of Civil Engineering SIET, TUMKUR - 6.

Principal PRINCIPAL SHRIDEVI INSTITUTE OF NGINEERING AND TECHNOLOGY TUMKUR - 572106

Circular Gaps and Proposed Suggestions

- In 2010 scheme hydraulic structures and irrigation design drawing was included. But in 2017 and 2018 scheme this was eliminated. We request you to consider this course during the revision of scheme and syllabus.
- 2. The Bridge engineering is offered as a professional elective course. Since the subject is required for all the students for placement. We request you to consider it as a course during the revision of scheme and syllabus.

(Dr. C. Negaranja)

HOD

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

- Soil Mechanics and Foundation Engineering- Murthy V.N.S. (1996), 4th Edition, UBS Publishers and Distributors, New Delhi.
- 3. Basic and Applied Soil Mechanics- Gopal Ranjan and Rao A.S.R. (2000), New Age International (P) Ltd., Newe Delhi.

L Geotechnical Engineering- Venkatrahmaiah C. (2006), 3rd Edition New Age International (P) Ltd., Newe Delhi.

5. Soil Mechanics- Craig R.F. (1987), Van Nostrand Reinhold Co. Ltd.

6. Principles of Geotechnical Engineering- Braja M. Das (2002), 5th Edition, Thomson Business Information India (P) Ltd., India.

 Text Book of Geotechnical Engineering- Iqbal H. Khan (2005), 2nd Edition, PHI, India.

HYDRAULIC STRUCTURES & IRRIGATION DESIGN - DRAWING

Subject Code	: 10 CV 65	IA Marks	: 25
No. of Lecture Hrs/Week	: 02+03	Exam Hours	: 04
Total no. of Lecture Hrs.	: 25+27	Exam Marks	: 100

PART – A Hydraulic Structures

Unit 1: Reservoir Planning:

Introduction, classification of reservoir, Storage zones of a reservoir, mass curve, fixing capacity of a reservoir, safe yield, problems, density currents, trap efficiency, reservoir sedimentation, life of a reservoir, economic height of a dam, problems, environmental effects of reservoir. 6 Hours

Unit 2: Gravity Dams

Introduction, forces on a gravity dam, stress analysis in gravity dams, problems, combination of forces for design. Elementary and practical profiles of a gravity dam, stability analysis (without earthquake forces), problems, galleries in gravity dams. **7 Hours**

UNIT 3: Earthen Dams

Introduction, types of earth dams, construction methods, design criteria for earth dams, causes of failure of earth dams, section of dam, preliminary design criteria, problems, control of seepage through earth dams, safety measures. 6 Hours

77 - epiahestil

UNIT 4: Spillways

Introduction essentials of a spillway. Spillway components factors affecting type & design of spillways, ogee spillway (simple design problems). Energy dissipation below spillways (hydraulic jump-No design.)

6 Hours

27 Hours

PART – B Irrigation Design –Drawing

Design and Drawing with all the three views of:

- 1. Surplus weir with stepped apron
- 2. Tank Plug sluice without tower head
- 3. Canal gate sluice without tower head
- 3. Notch type canal drop
- 4. Canal Cross regulator
- 5. Aqueduct (Hydraulic design only)

Text Books:

- Text book of irrigation Engineering & Hydraulic Structures R.K. Sharma, Oxford & IBH Publishing Company, New Delhi (2002).
- Irrigation and Water Resources Engineering G.L. Asawa, New Age International Publishers, New Delhi (2005).
- Irrigation, Water Resources and Water Power Engineering Modi P.N., Standard Book House, New Delhi.
- Design of Minor Irrigation and Canal Structures C. Sathyanarayana Murthy, New Age International Publishers, New Delhi.

Reference Books:

- Irrigation Engineering & Hydraulic Structures Garg, S.K., Khanna Publishers, New Delhi.
- 2. Hydraulic Structures & Irrigation Design Drawing -
- Dr. N. Balasubramanya, Tata Mcgraw-Hill Education Pvt.Ltd, New Delhi.
 Irrigation and Water Power Engineering Madan Mohan Das & Mimi Das Saikia, PHI Learning Pvt. Ltd., New Delhi (2009).

Question Paper Pattern:

Four questions are to be set from Part A of which TWO full questions are to be answered for 40 marks

Two questions are to be set from part B of which ONE full question to be answered for 60 marks (25 marks for Design + 35 marks for two views.)

78 Jahersh

Subject Code No. of Lectu Total No. of

UNIT -1 Introduction stress and str relations, St.

UNIT - 2 Differential equations, A Dimensional

UNIT- 3 Plane stress of surface s analytical me

UNIT - 4 Two-dimens cantilever bea Simply supp

UNIT - 5 Two-dimensionequations of

UNIT - 6 Axi Symmetri cylinder.

UNIT- 7 Effect of circ

B. E. CIVIL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VIII BRIDGE ENGINEERING						
Course Code	18CV821	CIE Marks	40			
Teaching Hours/Week(L:T:P)	(3:0:0)	SEE Marks	60			
Credits	03	Exam Hours	03			

Course Learning Objectives: This course will enable students to understand the analysis and design of concrete Bridges.

Note: All designs have to be done by Working Stress Method

Module -1

Introduction to bridges, classification, selection of bridge site and preliminary and detailed survey work computation of discharge, linear waterway, economic span, afflux, scour depth.

Design loads for bridges, introduction to I.R.C. loading standards, Load Distribution Theory, Bridge slabs, Effective width, Introduction to methods as per I.R.C.

Module -2

Design of Slab Bridges: Straight and skew slab bridges.

Module -3

Design of T beam bridges(up to three girder only)

Proportioning of components, analysis of slab using IRC Class AA tracked vehicle, structural design of slab, analysis of cross girder for dead load & IRC Class AA tracked vehicle, structural design of cross girder, analysis of main girder using Courbon's method, calculation of dead load BM and SF, calculation of live load B M & S F using IRC Class AA Tracked vehicle. Structural design of main girder.

Module -4

Other Bridges:

Design of Box culvert (Single vent only).

Design of Pipe culverts.

Module -5

Substructures - Design of Piers and abutments,

Introduction to Bridge bearings, Hinges and Expansion joints.(No design).

Course outcomes: After studying this course, students will be able to:

- 1. Understand the load distribution and IRC standards.
- 2. Design the slab and T beam bridges.
- 3. Design Box culvert, pipe culvert
- 4. Use bearings, hinges and expansion joints and
- 5. Design Piers and abutments.

Question paper pattern:

- · The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

- 1. Johnson Victor. D, "Essentials of Bridge Engineering", Oxford Publishing Company.
- 2. N Krishna Raju, "Design of Bridges, Oxford and IBH publishing company
- 3. T R Jagadeesh and M A Jayaram, "Design of bridge structures", Prentice Hall of India **Reference Books:**

- 1. Jain and Jaikrishna, "Plain and Reinforced Concrete", Vol.2., Nem Chand Brothers.
- 2. Standard specifications and code of practice for road bridges, IRC section I,II, III and IV.
- 3. "Concrete Bridges", The Concrete Association of India

-epiaheshpur

Sri Shridevi Charitable Trust (R.)

(Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi)

Sira Road, Tumakuru - 572 106. Karnataka.

An ISO 9001:2015 Certified Institution

Phone: 0816-2212629 | Fax: 0816-2212628 | Email: info@shrideviengineering.org | Web: http://www.shrideviengineering.org

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Ref: SIET/2019-20/EEE 116G

19-08-2019

То

The Chairman Board of Studies (BOS) Electrical & Electronics Engineering VTU, BELGAVI

Respected Sir,

Sub: Suggestion for proposed 2018 scheme of VTU syllabus - Reg.

With reference to the above subject, we have proposed suggestions for some courses in the proposed 2018 Scheme/syllabus of Electrical & Electronics Engineering board Visvesvaraya Technological University, Belagavi.

We highly recommend you the following changes in the list and request you to consider these during the revision of the curriculum and syllabus by the university

Curricular Gaps and Proposed Suggestions

In 2018 Scheme, the Computer Aided Electrical Drawing (18EE643) is offered as professional elective course. We suggest the board to consider it as core course during the revision of scheme & syllabus

Thanking you,

Head of the Department Electrical & Electronics Engineering Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

Principal SIET, TUMAKURU PRINCIPAL SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY TUMKUR - 572106.

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI Scheme of Teaching and Examination 2018 – 19 Outcome Based Education(OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2018 – 19)

11 01					Teachin	ng Hours	/Week		Exami	ination	1.1.1	
SL No	Cou Cou	rse and rse code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing)uration in hours	JE Marks	sEE Marks	otal Marks	Credits
					L	Т	Р		0		F	
1	PCC	18 EE61	Control Systems	EEE	3	2		03	40	60	100	4
2	PCC	18 EE62	Power System Analysis - 1	EEE	3	2		03	40	60	100	4
3	PCC	18 EE63	Digital Signal Processing	EEE	3	2		03	40	60	100	4
4	PEC	18 EE64X	Professional Elective -1	EEE	3			03	40	60	100	3
5	OEC	18 EE65X	Open Elective -A	EEE	3.			03	40	60	100	3
6 .	PCC	18 EEL66	Control System Laboratory	· EEE	-	2	. 2	03	40	60	100	2
7.	PCC	18 EEL67	Digital Signal Processing Laboratory	EEE		2	2	03	40	60	100	2
8	MP	18 EEMP68	Mini-project				2	03	40	60	100	2
9	Internship		Internship	To be carri and VIII se	ed out du	ring the	vacation/s	of VI an	d VII se	emesters	and /or '	VII
5 1				TOTAL	15	10	06	24	320	480	800	24

Note: PCC: Professional core, PEC: Professional Elective, OE: Open Elective, MP: Mini-project.

Professional Elective -1					
Course code under18XX64X	Course Title				
18 EE641	Introduction to Nuclear Power				
18 EE642	Electrical Engineering Materials				
18 EE643	Computer Aided Electrical Drawing				
18 EE644	Embedded System				
18 EE645	Object Oriented Programming using C++				
18EE646	Electric Vehicles Technologies				
18EE647	Sensors and Transducers				

Open Elective -A

Students can select any one of the open electives offered by other Departments expect those that are offered by the parent Department (Please refer to the list of open electives under 18XX65X).

Selection of an open elective shall not be allowed if,

The candidate has studied the same course during the previous semesters of the programme.

The syllabus content of open elective is similar to that of the Departmental core courses or professional electives.

A similar course, under any category, is prescribed in the higher semesters of the programme.

Registration to electives shall be documented under the guidance of Programme Coordinator/ Advisor/Mentor.

Mini-project work:

Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini-project can be assigned to an individual student or to a group having not more than 4 students.

CIE procedure for Mini-project:

(i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the Mini-project work, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

(ii) Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all the guides of the college.

The CIE marks awarded for the Mini-project, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE for Mini-project:

(i) Single discipline: Contribution to the Mini-project and the performance of each group member shall be assessed individually in the semester end examination (SEE) conducted at the department.

(ii) Interdisciplinary: Contribution to the Mini-project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belong to.

Internship: All the students admitted to III year of BE/B.Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII semesters and /or VII and VIII semesters. A University examination shall be conducted during VIII semester and the prescribed credit shall be included in VIII semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.

5

B. E. ELECTRICAL AND ELECTRONICS ENGINEERING CHOICE BASED CREDIT SYSTEM (CBCS) AND OUTCOME BASED EDUCATION (OBE) SEMESTER – VI

COMPUTER AIDED EL	ECTRICAL DRAWING (PI	ROFESSIONAL ELECTIV	E)
Course Code	18EE643	CIE Marks .	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

• To discuss the terminology of DC and AC armature windings.

• To discuss design and procedure to draw armature winding diagrams for DC and AC machines.

• To discuss the substation equipment, their location in a substation and development of a layout for substation.

• To discuss different sectional views of transformers, DC machine, its parts and alternator and itsparts.

 To explain development of sectional views of Transformers, DC machine and alternators using the design data, sketches.

Suitable CAD software can be used for drawings PART - A

Module-1

Winding Diagrams:

(a) Developed Winding Diagrams of D.C. Machines: Simplex Double Layer Lap and Wave Windings.

(b) Developed Winding Diagrams of A.C. Machines:

(c)Integral and Fractional Slot Double Layer Three Phase Lap and Wave Windings.

(d) Single Layer Windings – Un-Bifurcated 2 and 3 Tier Windings, Mush Windings, Bifurcated 3 Tier Windings. Module-2

Module-2

Single Line Diagrams: Single Line Diagrams of Generating Stations and Substations Covering Incoming Circuits, Outgoing Circuits, Busbar Arrangements (Single, Sectionalised Single, Main and Transfer, Double Bus Double Breaker, Sectionalised Double Bus, One and a Half Circuit Breaker Arrangement, Ring Main), Power Transformers, Circuit Breakers, Isolators, Earthing Switches, InstrumentTransformers, Surge or Lightning Arresters, Communication Devices (Power-Line Carrier) and Line Trap.

Module-3

Electrical Machine Assembly Drawings Using Design Data, Sketches or Both:

Transformers - Sectional Views Of Single And Three Phase Core And Shell Type Transformers.

Module-4

Electrical Machine Assembly Drawings Using Design Data, Sketches or Both:

D.C. Machine - Sectional Views of Yoke with Poles, Armature and Commutator dealt separately.

Module-5

Electrical Machine Assembly Drawings Using Design Data, Sketches or Both:

Alternator - Sectional Views of Stator and Rotor dealt separately.

Course Outcomes: At the end of the course the student will be able to:

- · Develop armature winding diagram for DC and AC machines
- · Develop a Single Line Diagram of Generating Stations and substation using the standard symbols.
- · Construct sectional views of core and shell types transformers using the design data

• Construct sectional views of assembled DC and AC machine and their parts using the design data or the sketches

Question paper pattern:

- The question paper will have two parts, PART A and PART B.
- Each part is for 50 marks.
- Part A is for Modules 1 and 2.
- Questions 1 and 2 of PART A will be only on DC windings or only on AC windings. Students have to answer any one of them. The marks prescribed is 25.
- Question 3 of PART A covering module 2 is compulsory. The marks prescribed is 15.
- Part B is for Modules 3, 4 and 5.

(Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi)

Sira Road, Tumakuru - 572 106. Karnataka.

DEPARTMENT OF CIVIL ENGINEERING

Ref: SIET/CV/2019-20/ 166

Date: 19/08/2019

To,

The Chairman Board of Studies Civil Engineering VTU, Belgavi.

Sub: Proposed suggestion for proposed syllabus 2018- scheme of VTU Syllabus- reg

With reference to the above subject, we have hereby enclosed a list of curricular gaps and the proposed suggestions for some course as of proposed 2018 scheme/ syllabus of civil engineering board VTU, Belagavi.

We highly recommend you the following changes in the list and request you to consider those during the revision of the curriculum and syllabus by the university.

Thank you,

Encl : Circular Gaps and Proposed Suggestions

Head of the Department Civil Engineering HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

PRINCIPAL PRINCIPAL SHRIDEVI INSTITUTE OF SINEERING AND TECHNOLOGY TUMKUR - 572106

Circular Gaps and Proposed Suggestions

- In 2017 scheme students are studying Geotechnical Engineering laboratory (17CVL58) in fifth semester. Now we recommend this Geotechnical engineering Laboratory needs to be studied in higher semester.
- 2. In 2018 scheme, Computer aided Building Planning & drawing laboratory (18CVL37) was included for the third semester. Since students will study Design of RC structural elements in the fifth semester. Since we request you to include the CAD lab in the fifth or sixth semester.

C. Nagaraja (Dr. C. Nagaroja)

rapelator HOD

Dept. of Civil Engineering SIET, TUMKUR - 6.

TITLE OF THE COURSE: CONCRETE AND HIGHWAY MATERIALS LABORATORY B.E., V Semester, Civil Engineering [As per Choice Based Credit System (CBCS) scheme]

Course Code	1700158	CIE Morke	40
Number of	03=(1 Hour Instruction + 2 Hours	SEE Marks	60
Lecture	Laboratory)	SEE Marks	00
Hours/Week	Laboratory		
Total Number of	40	Exam Hours	03
Hours			
RBT Levels	L1, L2, L3,		
	Credits – 02		
Course objectives:	This course will enable students		
1. To learn the princ	ciples and procedures of testing Concret	e and Highway m	aterials
and to get hands on	experience by conducting the tests and	evolving inference	ces.
Modules			
Part A: Concrete La	ab		
1. Tests on Cemen	t:		
a. Normal Co	onsistency		
b. setting tin	ne		
c. compress	ive strengtn		
d. Inteness c	by air permeability test		
e. specific gr	avity		
2. Tests of Concre	concrete mix as per IS-10262		
h Tests on f	resh concrete:		
i. slur	mp.		
ii. com	paction factor and		
iii. Vee	Bee test		
c. Tests on h	nardened concrete:		
i. com	pressive strength test,		
ii. split	tensile strength test,		
iii. flext	ural strength test		
d. NDT tests	by rebound hammer and pulse velocity	test.	
3. Tests on Self Co	mpacting Concrete:		
a. Design of	self compacting concrete,		
b. slump flor	w test,		
c. V-funnel t	.est,		
d. J-Ring tes	it,		
e. U Box tes	tand		
t. L BOX test	atoriala Y ak		
Tests on Arr	regates		
1. ICSIS OII Agg	Crushing value		
h Los Angel	es abrasion test		
c Aggregate	impact test		
d. Aggregate	shape tests (combined index and ang	ularity number)	
2. Tests on Bitu	iminous Materials		
a. Penetra	ation test		
b. Ductili	ty test		
c. Softeni	ng point test		
d. Specifie	c gravity test		
e. Viscosi	ty test by tarviscometer		
f. Bitumi	nous Mix Design by Marshall Method (D	emonstration	
only)			

-epiahestopuar

- 3. Tests on Soil
 - a. Wet sieve analysis
 - b. CBR test

Course outcomes: During this course, students will develop expertise in;

- 1. 1. Conduct appropriate laboratory experiments and interpret the results
- 2. Determine the quality and suitability of cement
- 3. Design appropriate concrete mix
- 4. Determine strength and quality of concrete
- 5. Test the road aggregates and bitumen for their suitability as road material.
- 6. Test the soil for its suitability as sub grade soil for pavements.

Question paper pattern:

- All are individual experiments
- Instructions as printed on the cover page of answer script for split up of marks to be strictly followed.
- All exercises are to be included for practical examination.

Reference Books:

- 1. 1. M.L.Gambir, "Concrete Manual", Danpat Rai and sons, New Delhi
- 2. Shetty M.S, "Concrete Technology", S. Chand & Co. Ltd, New Delhi.
- 3. Mehta P.K, "Properties of Concrete", Tata McGraw Hill Publications, New Delhi.
- 4. Neville AM, "Properties of Concrete", ELBS Publications, London.
- 5. Relevant BIS codes.
- 6. S K Khanna, C E G Justo and A Veeraragavan, "Highway Materials Testing Laboratory Manual ", Nem Chand Bros, Roorkee
- 7. L R Kadiyali, "Highway Engineering ", Khanna Publishers, New Delhi

-quaherlafinas,

B. E. CIVIL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

COMPUTER AID	ED BUILDING P	LANNING AND DRA	AWING	
Course Code	18CVL37	CIE Marks	40	
Teaching Hours/Week(L:T:P)	(0:2:2)	SEE Marks	60	
Total Number of Lecture/Practice Hours	02	Exam Hours	03	

Course Learning Objectives: Provide students with a basic understanding

- 1. Achieve skill sets to prepare computer aided engineering drawings
- 2. Understand the details of construction of different building elements.
- 3. Visualize the completed form of the building and the intricacies of construction based on the engineering drawings.

Module:1

Drawing Basics: Selection of scales for various drawings, thickness of lines, dimensioning, abbreviations and conventional representations as per IS: 962.

Simple engineering drawings with CAD drawing tools : Lines, Circle, Arc, Poly line, Multiline, Polygon, Rectangle, Spline, Ellipse, Modify tools: Erase, Copy, Mirror, Offset, Array, Move, Rotate, Scale, Stretch, Lengthen, Trim, Extend, Break, Chamfer and Fillet, Using Text: Single line text, Multiline text, Spelling, Edit text, Special Features: View tools, Layers concept, Dimension tools, Hatching, Customizing toolbars, Working with multiple drawings.

Module:2

Drawings Related to Different Building Elements:

Following drawings are to be prepared for the data given using CAD Software

a) Cross section of Foundation, masonry wall, RCC columns with isolated & combined footings.

- b) Different types of bonds in brick masonry.
- c) Different types of staircases Dog legged, Open well.
- d) Lintel and chajja.
- e) RCC slabs and beams.
- f) Cross section of a pavement.
- g) Septic Tank and sedimentation Tank.
- h) Layout plan of Rainwater recharging and harvesting system.
- i) Cross sectional details of a road for a Residential area with provision for all services.
- j) Steel truss (connections Bolted).

Note: Students should sketch to dimension the above in a sketch book before doing the computer drawing.

Module -3:

Building Drawings: Principles of planning, Planning regulations and building bye-laws, factors affecting site selection, Functional planning of residential and public buildings, design aspects for different public buildings. Recommendations of NBC.

Drawing of Plan, elevation and sectional elevation including electrical, plumbing and sanitary services using CAD software for:

- 1. Single and double story residential building.
- 2. Hostel building.
- 3. Hospital building.
- 4. School building.

Submission drawing (sanction drawing) of two storied residential building with access to terrace including all details and statements as per the local bye-laws

Note:

- Students should sketch to dimension the above in a sketch book before doing the computer drawing
- One compulsory field visit/exercise to be carried out.
- Single line diagrams to be given in the examination.

13

- quahershowar

Course Outcomes: After studying this course, students will be able to

- 1. Prepare, read and interpret the drawings in a professional set up.
- 2. KnowtheproceduresofsubmissionofdrawingsandDevelopworkingandsubmissiondrawingsforbuilding.
- 3. Plananddesignaresidentialorpublicbuildingasperthegivenrequirements.

Question paper pattern:

- There will be four full questions with sub divisions if necessary from Module2 with each full question carrying twenty five marks. Students have to answer any two questions.
- There will be two full questions from Module 3 with each full question carrying fifty marks. Students have to
 answer any one question. The conduction of examination and question paper format of should be in lines of 1st
 year CAED drawing. It's a drawing paper but the exam will be conducted by batches in the computer labs.
 Question papers should be given in batches.

Textbook:

- 1. MG Shah, CM Kale, SY Patki, "Building drawing with an integrated approach to Built Environment Drawing", Tata McGraw Hill Publishing co. Ltd., New Delhi
- 2. Gurucharan Singh, "Building Construction", Standard Publishers, & distributors, New Delhi.
- 3. Malik R S and Meo G S, "Civil Engineering Drawing", Asian Publishers/Computech Publications Pvt Ltd.

Reference Books:

- 1. Time Saver Standard by Dodge F. W., F. W. Dodge Corp.
- 2. IS: 962-1989 (Code of practice for architectural and building drawing).
- 3. National Building Code, BIS, New Delhi.

Sri Shridevi Charitable Trust (R.) RIDEVI INSTITUTE OF ENGINEERING & TECHNOLOG

(Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi) Sira Road, Tumakuru - 572 106. Karnataka.

Phone: 0816-2212629 | Fax: 0816-2212628 | Email: info@shrideviengineering.org | Web: http://www.shrideviengineering.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Ref: SIET/2019-20/ECE/ 118q.

20-08-2019

То

The Chairman

Board of Studies (BOS) Electronics & Communication Engineering VTU, BELGAVI

Respected Sir,

Sub: Suggestion for proposed 2018 scheme of VTU syllabus - Reg.

With reference to the above cited subject, it is herewith enclosed curricular gaps and the proposed suggestions for some courses in the proposed 2018 scheme / syllabus of Electronics & Communication Engineering board of Visvesvaraya Technological University, Belagavi.

We request you to kindly consider the following points during the revision of the curriculum and syllabus by the University.

Curricular Gaps and proposed suggestion:

We suggest the BOS member to replace Mini-Project (18ECMP68) in VI Semester of 2018 scheme & syllabus with the Professional Elective- Python Application Programming-18EC646 during the revision of the curriculum and syllabus by the University, which gives more knowledge and adds confidence to student to work on projects.

Also remove the Mini-Project (18ECMP68) in VI Semester and combine it with Internship-18ECI85 to be carried out during the vacation of VI and VII semester and /or VII and VIII semesters.

Thanking You,

Head of the Department
 Electronics & Communication Engineering

HOD Dept of E&C SIET, Tumkur-6

SIET, TUMAKURU

PRINCIPAL SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY TUMKUR - 572106

			VISVESVARAYA TEC Scheme of Tec	HNOLOGICAL UN aching and Examina	IVERSITY ation 2018	, BELAG	AVI					
			Outcome Based Education (OBE) and Choice Ba	ased Credit	System	(CBCS)					
			(Effective fr	om the academic yea	ar 2018 – 19	<u>n</u>						
Prog	amme: B.E:	Electronics & C	communication Engineering	VI CEMPETED								
	1			VI SEMESTER	Tooghi	na House	AVaal		Fran	Inotion		
SL No	Cour Cour	rse and se code	Course Title	caching partment	lkeary .ecture	ntorial	ractical/	ation in ours	Marks	Marks	otal arks	Credits
				Del		F	P	h	E	EE	E S	-
					L	T	Р	-	0	S		
1	PCC	18EC61	Digital Communication		3	2		03	40	60	100	4
2	PCC	18EC62	Embedded Systems		3	2		03	40	60	100	. 4
3	PCC	18EC63	Microwave and Antennas		3	2		03	40	60	100	4
4	PEC	18XX64X	Professional Elective -1		3		(1 m)	03	40	60	100	3
5	OEC	18XX65X	Open Elective -A		3		**	03	40	60	100	3
6	PCC	18ECL66	Embedded Systems Laboratory			2	2	03	40	60	100	2
7	PCC	18ECL67	Communication Laboratory			2	2	03	40	60	100	2
8	MP	18ECMP68	Mini-project				2	03	40	60	100	2
9	Internship	1000 000 e	Internship	To be carried out d	luring the va	cation/s o	f VI and VI	I semeste	rs and /o	r VII and	VIII seme	sters.
				TOTAL	15.	10	6	24	320	480	800	24
Note:	PCC: Profess	ional core, PEO	C: Professional Elective, OE: Open Elec P	ctive, MP: Mini-proj rofessional Elective	ject. -1							
Co	irse code unde	er 18XX64X	Course Title									
18EC	641		Operating System									
18EC	642		Artificial Neural Networks									Children of
18EC	643		Data Structures using C++									
18EC	644		Digital System Design Using Verilog									24
18EC	645	Disk of the second	Nanoelectronics									
18EC	646	A second second second	Python Application Programming									

Sri Shridevi Charitable Trust (R.) RIDEVI INSTITUTE OF ENGINEERING & TECHNO

(Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi)

Sira Road, Tumakuru - 572 106. Karnataka.

An ISO 9001:2015 Certified Institu

Phone: 0816-2212629 | Fax: 0816-2212628 | Email: info@shrideviengineering.org | Web: http://www.shrideviengineering.org

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Ref: SIET/2019-20/EEE 1199

21-08-2019

To

The Chairman Board of Studies (BOS) Electrical & Electronics Engineering VTU, BELGAVI

Respected Sir,

Sub: Suggestion for proposed 2018 scheme of VTU syllabus - Reg.

With reference to the above subject, we have proposed suggestions for some courses in the proposed 2018 Scheme/syllabus of Electrical & Electronics Engineering board Visvesvaraya Technological University, Belagavi.

We highly recommend you the following changes in the list and request you to consider these during the revision of the curriculum and syllabus by the university

Curricular Gaps and Proposed Suggestions

In 2018 Scheme, the Advanced Control Systems (18EE734) is offered as professional elective course. We suggest the board to consider it as core course during the revision of scheme & syllabus

Thanking you,

G - H R Head of the Department Electrical & Electronics Engineering Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

Principal SIET, TUMAKURU PRINCIPAL SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY TUMKUR - 572106

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI Scheme of Teaching and Examination 2018 – 19 Outcome Based Education(OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2018 – 19)

7

VII SH	EMESTER							1912	144			
-					Teachi	ng Hours	/Week		Exami	nation		
SI. No	Course Course	and code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	fotal Marks	Credits
					L	T	Р	1.1			-	
1	PCC	18 EE71	Power System Analysis - 2	EEE	2	2		03	40	60	100	3
2.	PCC	18 EE72	Power System Protection	EEE	3		-	03	40	60	100	3
3	PEC	18 EE73X	Professional Elective - 2	· EEE	3			03	40	60	100	3
4.	PEC	18 EE74X	Professional Elective - 3	EEE ·	3			03	40	60	100	3
5	OEC	18 EE75X	Open Elective -B	EEE	3			03	40	60	100	3
6	PCC	18 EEL76	PSS laboratory	EEE		2	2	03	40	60	100	2
7	PCC	18 EEL77	Relay & HV lab	EEE		2	2	03	40	60	100	2
8	Project	18 EEP78	Project Work Phase - 1	EEE			2		100		100	1
9	Internship		Internship	(If not com carried out	pleted du during th	ring the e vacatio	vacation of VII	of VI and and VIII	VII sen semeste	nesters, i ers)	it shall be	8
				TOTAL	14	06	06	21	380	420	800	20

Note: PCC: Professional core, PEC: Professional Elective.

	Professional Elective - 2
Course code under	Course Title
18XX73X	
18EE731	Solar and Wind Energy
18EE732	Micro and Nano Scale Sensors and Transducers
18 EE733	Integrated of Distribution Generation.
18 EE734	Advanced Control Systems
18 EE735	Reactive Power Control in Electric Power Systems
	Professional Electives - 3

Course code under	Course Title
18 EE74X	
18 EE741	Industrial Drives and Application
18 EE742	Utilization of Electrical Power
18 EE743	AI Techniques for Electrical and hybrid Electric Vehicles
18 EE744	Smart Grid
18 EE745	Artificial Neural Network With Applications to Power Systems

Open Elective -B

Students can select any one of the open electives offered by other Departments expect those that are offered by the parent Department (Please refer to the list of open electives under 18XX75X).

Selection of an open elective shall not be allowed if,

The candidate has studied the same course during the previous semesters of the programme.

The syllabus content of open elective is similar to that of the Departmental core courses or professional electives.

A similar course, under any category, is prescribed in the higher semesters of the programme.

Registration to electives shall be documented under the guidance of Programme Coordinator/ Advisor/Mentor.

	B. E. ELECTRICAL AND ELECTRONICS ENGINEERING	
	CHOICE BASED CREDIT SYSTEM (CBCS) AND OUTCOME BASED EDUCATION (OBE)	
	SEMESTER – VII	
	ADVANCED CONTROL SYSTEMS (PROFESSIONAL ELECTIVE)	
_		_

Course Code	18EE734	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course objectives:

- To introduce state variable approach for linear time invariant systems in both the continuous and discrete time systems.
- To explain development of state models for linear continuous time and discrete time systems.
- To explain application of vector and matrix algebra to find the solution of state equations for linear continuous – time and discrete – time systems.
- To define controllability and observability of a system and testing techniques for controllability and observability of a given system.
- To explain design techniques of pole assignment and state observer using state feedback.
- To explain about inherent and intentional nonlinearities that can occur in control system and developing the describing function for the nonlinearities.
- To explain stability analysis of nonlinear systems using describing function analysis.
- To explain the analysis of nonlinear systems using Lyapunov function and design of Lyapunov function for stable systems.

Module-1

State Variable Analysis and Design: Introduction, Concept of State, State Variables and State Model, State Models for Linear Continuous–Time Systems, State Variables and Linear Discrete–Time Systems.

Module-2

State Variable Analysis and Design (continued): Diagonalization, Solution of State Equations, Concepts of Controllability and Observability.

Module-3

Pole Placement Design and State Observers: Introduction, Stability Improvements by State Feedback, Necessary and Sufficient Conditions for Arbitrary Pole Placement, State Regulator Design, Design of State Observer, Compensator Design by the Separation Principle.

Module-4

Non-linear systems Analysis: Introduction, Common Nonlinear System Behaviours, Common Nonlinearities in Control Systems, Fundamentals, Describing Functions of Common Nonlinearities, Stability Analysis by Describing Function Method, Concept of Phase Plane Analysis, Construction of Phase Portraits, System Analysis on the Phase Plane.

Module-5

Non-linear systems Analysis (continued): Simple Variable Structure Systems, Lyapunov Stability Definitions, Lyapunov Stability Theorems, Lyapunov Functions for Nonlinear Systems.

Course Outcomes: At the end of the course the student will be able to:

- Discuss state variable approach for linear time invariant systems in both the continuous and discrete time systems.
- Develop of state models for linear continuous-time and discrete-time systems.
- Apply vector and matrix algebra to find the solution of state equations for linear continuoustime and discrete-time systems.
- Define controllability and observability of a system and test for controllability and observability of a given system.
- Design pole assignment and state observer using state feedback.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY (Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi)

Sira Road, Tumakuru - 572 106. Karnataka.

DEPARTMENT OF CIVIL ENGINEERING

Ref: SIET/CV/2019-20/ 119b

Date: 21/08/2019

To,

The Chairman Board of Studies Civil Engineering VTU, Belgavi.

Sub: Proposed suggestion for proposed syllabus 2018- scheme of VTU Syllabus- reg

With reference to the above subject, we have hereby enclosed a list of curricular gaps and the proposed suggestions for some course as of proposed 2018 scheme/ syllabus of civil engineering board VTU, Belagavi.

We highly recommend you the following changes in the list and request you to consider those during the revision of the curriculum and syllabus by the university.

Thank you,

Encl: Circular Gaps and Proposed Suggestions

rahush

Head of the Department Civil Engineering Dept. of Civil Engineering SIET, TUMKUR - 6.

PRINCIPAL SHRIDEVI INSTITUTE OF GINEERING AND TECHNOLOGY TUMKUR - 572106

Circular Gaps and Proposed Suggestions

- Since the final year students are doing their project work in the seventh semester, it is necessary to study the subject Research methodology, we kindly request you to include Research Methodology as one of the subjects in the sixth or seventh semester. This helps students to peruse their project works.
- Railways, Harbours Tunnelling and Airports was a professional elective subject. For Civil Engineering students studying of this subject is necessary to know the infrastructural details. Hence we recommend making this a Core subject.

(Dr. C. Nagaraja)

HOD

Dept. of Civil Engineering SIET, TUMKUR - 6.

Choice Based Cred	Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI						
RAILWAYS, HARBOUR, TUNNELING AND AIRPORTS Course Code 18CV645 CIE Marks 40							
Teaching Hours/Week(L:T:P)	(3:0:0)	SEE Marks	60				
Credits	03	Exam Hours	03				

Course Learning Objectives: This course will enable students to

- Understand the history and development, role of railways, railway planning and development based on essential criteria's.
- 2. Learndifferenttypesofstructuralcomponents,engineeringpropertiesofthematerials,tocalculatethematerial quantities required for construction
- 3. Understand various aspects of geometrical elements, points and crossings, significance of maintenance of tracks.
- Design and plan airport layout, design facilities required for runway, taxiway and impart knowledge about visual aids
- 5. Apply design features of tunnels, harbors, dock and necessary navigational aids; also expose them to various methods of tunneling and tunnel accessories.

Module-1

Railway Planning: Significance of Road, Rail, Air and Water transports – Coordination of all modes to achieve sustainability – Elements of permanent way

Rails, Sleepers, Ballast, rail fixtures and fastenings, - Track Stress, coning of wheels, creep in rails, defects in rails
 Route alignment surveys, conventional and modern methods- - Soil suitability analysis - Geometric design of railways, gradient, super elevation, widening of gauge on curves- Points and Crossings(Explanation & Sketches of Right and Left hand turnouts only).

Module-2

Railway Construction and Maintenance: Earthwork – Stabilization of track on poor soil, Calculation of Materials required for track laying – Construction and maintenance of tracks – Modern methods of construct ion & maintenance – Railway stations and yards and passenger amenities- Urban rail – Infrastructure for Metro, Mono and underground railways.

Module-3

Harbour and Tunnel Engineering: Definition of Basic Terms: Planning and Design of Harbours: Requirements, Classification, Location and Design

Principles – Harbour Layout and Terminal Facilities, Coastal Structures, Inland Water Transport – Wave action on Coastal Structures and Coastal Protection Works.

Tunneling: Introduction, size and shape of the tunnel, tunneling methods in soils, tunnel lining, tunnel drainage and ventilation.

Module-4

Airport Planning: Air transport characteristics, airport classification, air port planning: objectives, components, layout characteristics, and socio-economic characteristics of the catchment area, criteria for airport site selection and ICAO stipulations, typical airport layouts, Parking and circulation area.

Module-5

Airport Design: Runway Design: Orientation, Wind Rose Diagram, Runway length, Problems on basic and Actual Length, Geometric design of runways, Configuration and Pavement Design Principles, Elements of Taxiway Design, Airport Zones, Passenger Facilities and Services, Runway and Taxiway Markings and lighting.

Course outcomes: After studying this course, students will be able to:

- Acquires capability of choosing alignment and also design geometric aspects of railway system, runway and taxiway.
- 2. Suggest and estimate the material quantity required for laying a railway track and also will be able to determine the hauling capacity of a locomotive.
- 3. Develop layout plan of airport, harbor, dock and will be able relate the gained knowledge to identify required type of visual and/or navigational aids for the same.

4. Apply the knowledge gained to conduct surveying, understand the tunneling activities.

Question paper pattern:

-epiahershowar

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module. .
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbook:

- Saxena Subhash C and Satyapal Arora, "A Course in Railway Engineering", Dhanpat Rai and Sons, Delhi.
 Satish Chandra and Agarwal M. M, "Railway Engineering", 2nd Edition, Oxford University Press, New Delhi.
- 3. Khanna S K, Arora M G and Jain S S,"Airport Planning and Design", Nemch and and Brothers, Roorkee.
- 4. CVenkatramaiah,"TransportationEngineering", VolumeII:Railways, Airports, DocksandHarbours, Bridgesand Tunnels, Universities Press.
- Bindra S P, "A Course in Docks and Harbour Engineering", Dhanpat Rai and Sons, New Delhi. 5.

Reference Books:

- Oza.H.P.andOza.G.H.,"AcourseinDocks&HarbourEngineering".Charotar Publishing Co., 1.
- 2. Mundrey J. S. "A course in Railway Track Engineering". Tata Mc Graw Hill.
- Srinivasan R. Harbour," Dock and TunnelEngineering",26thEdition2013. 3.

-epiahestipuar

RESEARCH METHODOLOGY AND IPR (Professional Core Course) and (Common to all M.Tech Programmes) Course Code 18RMI17 CIE Marks 40 Number of Lecture Hours/Week 02 Exam Hours 03 Total Number of Lecture Hours/Week 02 Exam Hours 03 Total Number of Lecture Hours/Week 02 Exam Hours 03 Course objectives: 05 Get Marks 60 Course objectives: 0 Credits - 02 Course objectives: • To explain the functions of the literature review in research. • To explain carrying out a literature search, its review, developing theoretical and conceptual framev and writing a review. • To explain various research designs and their characteristics. • To explain various research designs and their characteristics. • To explain the details of sampling designs, and also different methods of data collections. • To explain various forms of the intellectual property, its relevance and business impact in the char global business environment. • To discuss leading International Instruments concerning Intellectual Property Rights. To discuss leading International Instruments concerning Intellectual Property Rights. Tese Module-1 Tesesearch Methodology: Introduction, Meaning of Research,	M.7 Outcome Based Edu	Fech Name of the progra acation(OBE) and Choice SEMESTER - I	mme (XXX) Based Credit System (CBCS)	
(Professional Core Course) and (Common to all M.Tech Programmes) Course Code 18RM117 CIE Marks 40 Number of Lecture Hours/Week 02 Exam Hours 03 Total Number of Lecture Hours 2.5 SEE Marks 60 Course objectives: - Credits - 02 - Course objectives: - - Credits - 02 Course objectives: - - - - • To explain the functions of the literature review in research. - - - • To explain various research designs and their characteristics. -	RES	EARCH METHODOLO	GY AND IPR	
Course Code 18RMI17 CIE Marks 40 Number of Lecture Hours/Week 02 Exam Hours 03 Total Number of Lecture Hours 25 SEE Marks 60 Course objectives: • To give an overview of the research methodology and explain the technique of defining a reseproblem • To explain the functions of the literature review in research. • To explain carrying out a literature search, its review, developing theoretical and conceptual framewand writing a review. • To explain various research designs and their characteristics. • To explain the details of sampling designs, and also different methods of data collections. • • To explain various forms of the intellectual property, its relevance and business impact in the chara global business environment. • • To discuss leading International Instruments concerning Intellectual Property Rights. • Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in India. • • Research Methodology: Research Approaches, Significance of Research, Research Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Problem, Selecting the Problem, Necessity of Defining India. • Revised Bloon's L_1 - Remembering, L_2 - Understanding	(Professional Cor	e Course) and (Common	to all M.Tech Programmes)	
Number of Lecture Hours/Week 02 Exam Hours 03 Total Number of Lecture Hours 25 SEE Marks 60 Credits - 02 Course objectives: • To give an overview of the research methodology and explain the technique of defining a reproblem • To explain the functions of the literature review in research. • To explain carrying out a literature search, its review, developing theoretical and conceptual framew and writing a review. • To explain various research designs and their characteristics. • To explain the details of sampling designs, and also different methods of data collections. • To explain the art of interpretation and the art of writing research reports. • To explain various forms of the intellectual property, its relevance and business impact in the char global business environment. • To discuss leading International Instruments concerning Intellectual Property Rights. Module-1 Research Methodology: Research Approaches, Significance of Research, Motivatin in Research Prosoles, Research Approaches, Significance of Knowing How Research is Done, Research Problem, Selecting the Problem, Necessity of Defining a Problem, Selecting the Problem, Necessity of Defining a Conceptual framewa, and Houle-2 Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining to research methodology, Broadening Knowledge base in research are, Enabling contextual finding	Course Code	18RMI17	CIE Marks 4	0
Tota Number of Lecture Hours 23 DEE Marks 00 Credits - 02 Course objectives: • To give an overview of the research methodology and explain the technique of defining a reseproblem • To explain the functions of the literature review in research. • • To explain carrying out a literature search, its review, developing theoretical and conceptual framewand writing a review. • • To explain various research designs and their characteristics. • • To explain the details of sampling designs, and also different methods of data collections. • • To explain the art of interpretation and the art of writing research reports. • • To explain various forms of the intellectual property, its relevance and business impact in the char global business environment. • • To discuss leading International Instruments concerning Intellectual Property Rights. • Module-1 Texe Hours • Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in In Research, Types of Research, Approaches, Significance of Research, Research Hordos versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Problem, Research Problem, Secarch methodology, Broadening Knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the literature. 05 <	Number of Lecture Hours/Week	02	Exam Hours (13
Crourse objectives: Crourse objectives: Crourse objectives:	Total Number of Lecture Hours	Credite 02	SEE Marks 0	0
 Conset objectives. To give an overview of the research methodology and explain the technique of defining a reproblem To explain the functions of the literature review in research. To explain carrying out a literature search, its review, developing theoretical and conceptual framew and writing a review. To explain various research designs and their characteristics. To explain the details of sampling designs, and also different methods of data collections. To explain the details of sampling designs, and also different methods of data collections. To explain the att of interpretation and the art of writing research reports. To explain the art of interpretation and the art of writing research reports. To discuss leading International Instruments concerning Intellectual Property Rights.■ Module-1	Course objectives:	Credits - 02		
 To explain the functions of the literature review in research. To explain carrying out a literature search, its review, developing theoretical and conceptual framew and writing a review. To explain various research designs and their characteristics. To explain the details of sampling designs, and also different methods of data collections. To explain the att of interpretation and the art of writing research reports. To explain the art of interpretation and the art of writing research reports. To explain various forms of the intellectual property, its relevance and business impact in the char global business environment. To discuss leading International Instruments concerning Intellectual Property Rights. Module-1 Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Research is Done, Research Problem: Research Problem, Selecting the Problem, Necessity of Defining India. Revised Bloom's L₁ - Remembering, L₂ - Understanding. Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to your research problem. Improving research Problem, An Illustration. Reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature review d. Revised Bloom's L ₁ - Remembering, L ₂ - Understanding. Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Sample Survey versus Census Survey, Types of Sampling Designs. Module-3 Revised Bloom's <td> To give an overview of the problem </td> <td>research methodology an</td> <td>d explain the technique of definin</td> <td>g a rœearch</td>	 To give an overview of the problem 	research methodology an	d explain the technique of definin	g a rœearch
 To explain carrying out a literature search, its review, developing theoretical and conceptual framewand writing a review. To explain various research designs and their characteristics. To explain the details of sampling designs, and also different methods of data collections. To explain the att of interpretation and the art of writing research reports. To explain the art of interpretation and the art of writing research reports. To explain various forms of the intellectual property, its relevance and business impact in the char global business environment. To discuss leading International Instruments concerning Intellectual Property Rights.■ Module-I Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India.■ Revised Bloom's L₁ – Remembering, L₂ – Understanding. Revised Bloom's L₁ – Rememberin	• To explain the functions of th	e literature review in resear	rch.	
 To explain various research designs and their characteristics. To explain the details of sampling designs, and also different methods of data collections. To explain the art of interpretation and the art of writing research reports. To explain various forms of the intellectual property, its relevance and business impact in the char global business environment. To discuss leading International Instruments concerning Intellectual Property Rights. Module-1	 To explain carrying out a liter and writing a review. 	rature search, its review, de	eveloping theoretical and conceptual	frameworks
 To explain the details of sampling designs, and also different methods of data collections. To explain the art of interpretation and the art of writing research reports. To explain various forms of the intellectual property, its relevance and business impact in the char global business environment. To discuss leading International Instruments concerning Intellectual Property Rights. Module-1	• To explain various research d	esigns and their characteris	stics.	
 To explain the art of interpretation and the art of writing research reports. To explain various forms of the intellectual property, its relevance and business impact in the char global business environment. To discuss leading International Instruments concerning Intellectual Property Rights. Module-1	• To explain the details of samp	oling designs, and also diffe	erent methods of data collections.	
 To explain various forms of the intellectual property, its relevance and business impact in the char global business environment. To discuss leading International Instruments concerning Intellectual Property Rights. To discuss leading International Instruments concerning Intellectual Property Rights. To discuss leading International Instruments concerning Intellectual Property Rights. Module-1 Teac Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India. Revised Bloom's L₁ – Remembering, L₂ – Understanding. Module-2 Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration. Revised Bloom's Lead of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature reviewed. Revised Bloom's Lu – Remembering, L₂ – Understanding. Module-3 Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. Revised Blo	• To explain the art of interpret	ation and the art of writing	research reports.	
 To discuss leading International Instruments concerning Intellectual Property Rights. ■ Module-1 Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India. ■ Revised Bloom's L₁ – Remembering, L₂ – Understanding. Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration. Revisend Bloom's L₁ – Remembering, L₂ – Understanding. Revised Bloom's L₁ – Remembering, L₂ – Understanding. Module-3 Revised Bloom's L₁ – Remembering, L₂ – Understanding. Revised Bloom's L₁ – Remembering, L₂ – Understanding. Revised Bloom's L₁ – Remembering to Research Design, Seatures of a Good Design, Important Concepts Relating to Research Design, Seatures of a Good Design, Important Concepts Relating to Research Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. ■ Revised Bloom's L₁ – Remembering, L₂ – Understanding. 	 To explain various forms of global business environment. 	the intellectual property, it	s relevance and business impact in t	he changing
Module-1 Texe Hom Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India. ■ 05 Revised Bloom's Taxonomy Level L ₁ – Remembering, L ₂ – Understanding. 05 Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration. 05 Revised Bloom's Taxonomy Level L ₁ – Remembering, L ₂ – Understanding. 05 Module-2 Iterature: Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed. ■ 05 Revised Bloom's Taxonomy Level L ₁ – Remembering, L ₂ – Understanding. 05 Module-3 Research Design, Meed for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs. 05 Design of Sample Surveys: Introduction, Sample Design, Sampling and Non-samplin	• To discuss leading Internation	nal Instruments concerning	Intellectual Property Rights.	
Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India. 05 Revised Bloom's Taxonomy Level L ₁ – Remembering, L ₂ – Understanding. 05 Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration. 05 Revised Bloom's Taxonomy Level Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature proviem a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed. 05 Module-3 L ₁ – Remembering, L ₂ – Understanding. 05 Module-3 L ₁ – Remembering, L ₂ – Understanding. 05 Revised Bloom's Taxonomy Level L ₁ – Remembering, L ₂ – Understanding. 05 Module-3 L ₁ – Remembering, L ₂ – Understanding. 05 Module-3 L ₁ – Remembering, L ₂ – Understanding. 05 Revised Bloom's Taxonomy Level L ₁ – Remembering, L ₂ – Understanding. 05 Module-3 L ₁ – Remembering, L ₂ – Understanding	Module-1			Teaching Hours
Revised Bloom's Taxonomy Level L₁ – Remembering, L₂ – Understanding. Module-2 05 Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration. 05 Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed. ■ 05 Revised Bloom's Taxonomy Level L₁ – Remembering, L₂ – Understanding. 05 Module-3 Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs. 05 Design of Sample Surveys: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. ■ Revised Bloom's L₁ – Remembering, L₂ – Understanding. ■ Revised Bloom's L₁ – Remembering, L₂ – Understanding.	Research Methodology: Introduction Research, Types of Research, Resear versus Methodology, Research and S Done, Research Process, Criteria of C India.	h, Meaning of Research, Ol rch Approaches, Significar Scientific Method, Importa Good Research, and Proble	bjectives of Research, Motivation in the of Research, Research Methods ance of Knowing How Research is ems Encountered by Researchers in	05
Module-2 Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration. 05 Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed. ■ Revised Bloom's 1, - Remembering, L ₂ - Understanding. Module-3 Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs. 05 Design of Sample Surveys: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. 05 Revised Bloom's L ₁ - Remembering, L ₂ - Understanding. 1	Revised Bloom's L ₁ – Rememberin	ng, L_2 – Understanding.		
Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining 05 the Problem, Technique Involved in Defining a Problem, An Illustration. Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed. ■ Problem, Technique Involved in Defining a Problem, Search Developing a conceptual framework, Writing about the literature reviewed. ■ 05 Revised Bloom's L1 – Remembering, L2 – Understanding. 05 Module-3 05 Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs. 05 Design of Sample Surveys: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. 05 Revised Bloom's L1 – Remembering, L2 – Understanding. 1	Module-2			
Revised Bloom's Taxonomy Level L ₁ - Remembering, L ₂ - Understanding. 05 Module-3 Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs. 05 Design of Sample Surveys: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. 1 Revised Bloom's L ₁ - Remembering, L ₂ - Understanding. 1	Defining the Research Problem: Re the Problem, Technique Involved in D Reviewing the literature: Place of t your research problem, Improving re area, Enabling contextual findings, I reviewing the selected literature, De framework, Writing about the literatur	search Problem, Selecting efining a Problem, An Illus he literature review in res- search methodology, Broa How to review the literature eveloping a theoretical fra- e reviewed.	the Problem, Necessity of Defining stration. earch, Bringing clarity and focus to idening knowledge base in research ire, searching the existing literature amework, Developing a conceptual	05
Module-3 Research Design: Meaning of Research Design, Need for Research Design, Features of a Good 05 Design, Important Concepts Relating to Research Design, Different Research Designs, Basic 05 Principles of Experimental Designs, Important Experimental Designs. 05 Design of Sample Surveys: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. Image: Census Survey, Types of Sampling Designs. Revised Bloom's L ₁ – Remembering, L ₂ – Understanding.	Revised Bloom's L ₁ – Rememberin Taxonomy Level	ng, L_2 – Understanding.	ann ann anna stàitean	
Research Design: Meaning of Research Design, Need for Research Design, Features of a Good 05 Design, Important Concepts Relating to Research Design, Different Research Designs, Basic 05 Principles of Experimental Designs, Important Experimental Designs. 05 Design of Sample Surveys: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. ■ Revised Bloom's L ₁ – Remembering, L ₂ – Understanding. ■	Module-3			
Revised Bloom's L ₁ – Remembering, L ₂ – Understanding.	Research Design: Meaning of Research Design: Meaning of Research Design, Important Concepts Relation Principles of Experimental Designs, Ir Design of Sample Surveys: Introduced Sample Survey versus Census Survey,	arch Design, Need for Re ag to Research Design, I nportant Experimental Des action, Sample Design, Sa Types of Sampling Design	search Design, Features of a Good Different Research Designs, Basic igns. ampling and Non-sampling Errors.	05
Taxonomy Level	Revised Bloom's L ₁ – Rememberin Taxonomy Level	ng, L ₂ – Understanding.		
Module-4	Module-4			1

-epiaheshpuar

Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of Secondary
Data, Selection of Appropriate Method for Data Collection, Case Study Method.05Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation,
Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report,
Layout05

01	itcome Based Education(OBE) and Choice Based Credit System (CBCS) SEMESTER - I 18RMI17RESEARCH METHODOLOGY AND IPR (Professional Core Course) and (Common to all M Tach Programmes)	
Module-4 (continu	ed)	Teaching Hours
Interpretation and Presentation, Mecha	Report Writing (continued): of the Research Report, Types of Reports, Oral anics of Writing a Research Report, Precautions for Writing Research Reports.	
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Intellectual Proper Complied Regime is Geographical Indica Protection of Plant Layout Design Act, Biological Diversit International Instru- and WTO, Paris Co Priority, Common H Unfair Competition for the Protection of Related Aspects of Agreement, Feature and Related Rights, Subject Matter, Rig	ty: The Concept, Intellectual Property System in India, Development of TRIPS n India, Patents Act, 1970, Trade Mark Act, 1999, The Designs Act, 2000, The ations of Goods (Registration and Protection) Act1999, Copyright Act,1957, The Varieties and Farmers' Rights Act, 2001, The Semi-Conductor Integrated Circuits 2000, Trade Secrets, Utility Models, IPR and Biodiversity, The Convention on y (CBD) 1992, Competing Rationales for Protection of IPRs, Leading ments Concerning IPR, World Intellectual Property Organisation (WIPO), WIPO invention for the Protection of Industrial Property, National Treatment, Right of Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Patent Cooperation Treaty (PCT), Advantages of PCT Filing, Berne Convention of Literary and Artistic Works, Basic Principles, Duration of Protection, Trade of Intellectual Property Rights(TRIPS) Agreement, Covered under TRIPS es of the Agreement, Protection of Intellectual Property under TRIPS, Copyright Trademarks, Geographical indications, Industrial Designs, Patents, Patentable hts Conferred, Exceptions, Term of protection, Conditions on Patent Applicants, Other Use without Authorization of the Right Holder, Layout-Designs of	05

At the end of the course the student will be able to:

- Discuss research methodology and the technique of defining a research problem
- Explain the functions of the literature review in research, carrying out a literature search, developing theoretical and conceptual frameworks and writing a review.
- Explain various research designs and their characteristics.
- Explain the art of interpretation and the art of writing research reports

uf lente

Question paper pattern:

Textbooks

Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.

- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- Students will have to answer 5 full questions, selecting one full question from each module
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60

M.Tech Name of the programme (XXX) Outcome Based Education(OBE) and Choice Based Credit System (CBCS) <u>SEMESTER - I</u> 18RMI17 RESEARCH METHODOLOGY AND IPR

(Professional Core Course) and (Common to all M.Tech Programmes)

1	Research Methodology: Methods and	C.R. Kothari,	New Age International	4 th Edition,
	Techniques	Gaurav Garg		2018
2	ResearchMethodologyastep-by-	Ranjit Kumar	SAGE PublicationsLtd	3 rd Edition,
	stepguideforbeginners. (For the topic			2011
	Reviewing the literature under module 2)			en and the
3	Study Material	Professional Prog	ramme Intellectual Property	Rights, Law
	(For the topic Intellectual Property under	and Practice, The	Institute of Company Secret	aries of India,
	module 5)	Statutory Body U	nder an Act of Parliament, S	eptember 2013
Ref	erence Books			
1	Research Methods: the concise knowledge	Trochim	Atomic Dog Publishing	2005
	base			
2	Conducting Research Literature Reviews:	Fink A	Sage Publications	2009
	From the Internet to Paper			

-epiahershopma

Sri Shridevi Charitable Trust (R.) EVI INSTITUTE OF ENGINEERING & TECHN(

(Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi)

Sira Road, Tumakuru - 572 106. Karnataka.

An ISO 9001:2015 Certified Institution

Phone: 0816-2212629 | Fax: 0816-2212628 | Email: info@shrideviengineering.org | Web: http://www.shrideviengineering.org DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Ref: SIET/2019-20/EEE/ 181

23-08-2019

To

The Chairman Board of Studies (BOS) Electrical & Electronics Engineering VTU, BELGAVI

Respected Sir,

Sub: Suggestion for proposed 2018 scheme of VTU syllabus - Reg.

With reference to the above subject, we have proposed suggestions for some courses in the proposed 2018 Scheme/syllabus of Electrical & Electronics Engineering board Visvesvaraya Technological University, Belagavi.

We highly recommend you the following changes in the list and request you to consider these during the revision of the curriculum and syllabus by the university

Curricular Gaps and Proposed Suggestions

In 2018 Scheme, the Industrial Drives & Applications(18EE741) is offered as professional elective course. We suggest the board to consider it as core course during the revision of scheme & syllabus

Thanking you,

G. H. R. Head of the Department Electrical & Electronics Engineering Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

Principal SIET, TUMAKURU PRINCIPAL SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY TUMKUR - 572106

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI Scheme of Teaching and Examination 2018 – 19 Outcome Based Education(OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2018 – 19)

7

VII SI	EMESTER						is care			_		
					Teachin	ng Hours	/Week		Exami	nation		
SI. No	Course Course	e and code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	fotal Marks	Credits
					L	Т	Р					
1	PCC	18 EE71	Power System Analysis – 2	EEE	2	2	-	03	40	60	100	3
2	PCC	18 EE72	Power System Protection	EEE	3			03	40	60	100	3
3	PEC	18 EE73X	Professional Elective - 2	EEE	3			03	40	60	100	3
4	PEC	18 EE74X	Professional Elective - 3	EEE	3			03	40	60	100	3
5	OEC	18 EE75X	Open Elective -B	EEE	3			03	40	60	100	3
6	PCC	18 EEL76	PSS laboratory .	. EEE		2	2	03	40	60	100	2
7	PCC	18 EEL77	Relay & HV lab	EEE		2	2	03	40	60	100	2
8	Project	18 EEP78	Project Work Phase - 1	EEE			2		100		100	1
9	Internship		Internship	(If not com carried out	pleted dur during the	ring the e vacatio	vacation of VII	f VI and and VIII	VII sen semeste	nesters, i ers)	t shall be	e
		*		TOTAL	14	06	06	21	380	420	800	20

Note: PCC: Professional core, PEC: Professional Elective.

	Professional Elective - 2		
Course code under 18XX73X	Course Title		· · · · · · · · · · · · · · · · · · ·
18EE731	Solar and Wind Energy		
18EE732	Micro and Nano Scale Sensors and Transducers		
18 EE733	Integrated of Distribution Generation.	1	
18 EE734	Advanced Control Systems		
18 EE735	Reactive Power Control in Electric Power Systems		
	Professional Electives 3	and the second of a	

Course code under 18 EE74X	Course Title		
18 EE741	Industrial Drives and Application		
18 EE742	Utilization of Electrical Power		
18 EE743	AI Techniques for Electrical and hybrid Electric Vehicles		
18 EE744	Smart Grid	1. A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
18 EE745	Artificial Neural Network With Applications to Power Systems		

Open Elective -B

Students can select any one of the open electives offered by other Departments expect those that are offered by the parent Department (Please refer to the list of open electives under 18XX75X).

Selection of an open elective shall not be allowed if,

The candidate has studied the same course during the previous semesters of the programme.

The syllabus content of open elective is similar to that of the Departmental core courses or professional electives.

A similar course, under any category, is prescribed in the higher semesters of the programme.

Registration to electives shall be documented under the guidance of Programme Coordinator/ Advisor/Mentor

INDUSTRIAL DRIVES AND APPLICATION (PROFESSIONAL ELECTIVE) Course Code IEEMarks 40 Teaching Hours/Week (L:T:P) (3:0:0) SEE Marks 60 Credits 03 Exam Hours 03 Course Learning Objectives: 03 Exam Hours 03 To explain dynamics and modes of operation of electric drives. 0 0 0 To explain selection of motor power ratings and control of DC motor using rectifiers. 0 1 0 To explain the control of induction motor drives under different conditions. • 1 0 sciencestrestrestrestrestrestrestrestrestrestr	B. E. ELECT CHOICE BASED CREDIT SY	RICAL AND ELECTRONIC STEM (CBCS) AND OUTCO SEMESTER – VII	S ENGINEERING OME BASED EDUCATIO	N (OBE)
Course Code 18EE741 CIE Marks 40 Teaching Hours/Week (L.T.P) (3:0:0) SEE Marks 60 Credits 03 Exam Hours 03 Course Learning Objectives: 03 Exam Hours 03 To define electric drive, its parts, advantages and explain choice of electric drive. • To explain selection of motor power ratings and control of DC motor using rectifiers. • To analyze the performance of induction motor, synchronous under different conditions. • • To discuss typical applications electrical drives in the industry. Module-1 Electrical Drives: Electrical Drives, Advantages of Electrical Drives. Parts of Electrical Drives, Choice of Electrical Drives: Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Chopper Control of DC Separately Excited Motor, Chopper Control of DC Separately Excited Motor, Chopper Control of DC Separately Excited Motor Pef	INDUSTRIAL DRIVES	SAND APPLICATION (PR	OFESSIONAL ELECTIVE	c)
Teaching Hours/Week (LT:P) (3:0:0) SEE Marks 60 Credits 03 Exam Hours 03 Correst Learning Objectives: 03 Exam Hours 03 To define electric drive, its parts, advantages and explain choice of electric drive. 0 0 To explain dynamics and modes of operation of electric drives. 0 0 0 To explain dynamics and modes of operation of electric drives. 0 0 0 0 To explain the control of induction motor, synchronous motor and stepper motor drives. 0 0 0 0 Module-1 Electrical Drives: Status of DC and ac Drives. 0 <td< th=""><th>Course Code</th><th>18EE741</th><th>CIE Marks</th><th>40</th></td<>	Course Code	18EE741	CIE Marks	40
Credits 03 Exam Hours 03 Course Learning Objectives: • To define electric drive, its parts, advantages and explain choice of electric drive. •	Teaching Hours/Week (L:T:P)	. (3:0:0)	SEE Marks	60
 Course Learning Objectives: To define electric drive, its parts, advantages and explain choice of electric drive. To explain dynamics and modes of operation of electric drives. To explain selection of motor power ratings and control of DC motor using rectifiers. To analyze the performance of induction motor drives under different conditions. To explain the control of induction motor, synchronous motor and stepper motor drives. To discuss typical applications electrical drives in the industry. Module-1 Electrical Drives: Electrical Drives, Advantages of Electrical Drives. Parts of Electrical Drives, Choice of Electrical Drives, Status of DC and a Drives. Dynamics of Electrical Drives: Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Hull Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Hull Controlled Rectifier Control of DC Separately Excited Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis, Speed Control of Induction Motor Drives: Analysis and Performance of Three Phase Induction Motor Drives, Analysis and Performance of Three Phase Induction Motors, Operation with	Credits	03	Exam Hours	03
 To define electric drive, its parts, advantages and explain choice of electric drive. To explain selection of motor power ratings and control of DC motor using rectifiers. To analyze the performance of induction motor drives under different conditions. To explain the control of induction motor, synchronous motor and stepper motor drives. To discuss typical applications electrical drives in the industry. Module-1 Electrical Drives: Electrical Drives. Advantages of Electrical Drives. Parts of Electrical Drives, Choice of Electrical Drives, Status of DC and ac Drive. Dynamics of Electrical Drives: Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Chopper Control of Series Motor. Module-3 Module-4 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Prives: (continued): Voltage Source Ontrol for Voltage Source Control, Cuese Control, Clase Control, Variable Voltage Source, Voltage Control, Variable Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Supply-starting, synchronous motor variab	Course Learning Objectives:			
 To explain dynamics and modes of operation of electric drives. To explain selection of motor power ratings and control of DC motor using rectifiers. To analyze the performance of induction motor drives under different conditions. To explain the control of induction motor, synchronous motor and stepper motor drives. To discuss typical applications electrical drives in the industry. Module-1 Electrical Drives: Electrical Drives, Advantages of Electrical Drives. Parts of Electrical Drives, Choice of Electrical Drives: Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Hul? Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Choper Control of DC Separately Excited Motor, Choper Control of Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Drives (continued): Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from Voltage Source: Nyechronous Motor Drives (co	 To define electric drive, its parts, adv 	antages and explain choice of	of electric drive.	
 To explain selection of motor power ratings and control of DC motor using rectifiers. To analyze the performance of induction motor drives under different conditions. To explain the control of induction motor, synchronous motor and stepper motor drives. To discuss typical applications electrical drives in the industry. Module-1 Electrical Drives, Status of DC and ac Drives. Dynamics of Electrical Drives, Status of DC and ac Drives. Dynamics of Electrical Drives: Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Drives. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Current, Chopper Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Chopper Control of Series Motor, Chopper Control of Separately Excited Motor, Chopper Control of Series Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Drives (continued): Voltage Source (CSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter resplace source inverter control, Single Phase induction motors. Synchronous Motor Drives (continued): Voltage Source Inverte	 To explain dynamics and modes of operation 	peration of electric drives.		
 To analyze the performance of induction motor drives under different conditions. To explain the control of induction motor, synchronous motor and stepper motor drives. To discuss typical applications electrical drives in the industry. Module-1 Electrical Drives: Electrical Drives, Advantages of Electrical Drives. Parts of Electrical Drives, Choice of Electrical Drives: Electrical Drives. Dynamics of Electrical Drives: Tundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited Control Rectifier Supply, Stating, Braking, Transient Analysis, Speed Control Tochord Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fod From Non-Sinusidal Voltage Source (CSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Prives: Variable Voltage Source (CSI) Control, current regulated vol	To explain selection of motor power	ratings and control of DC me	otor'using rectifiers.	
 To explain the control of induction motor, synchronous motor and stepper motor drives. To discuss typical applications electrical drives in the industry. Module-1 Electrical Drives: Electrical Drives, Advantages of Electrical Drives. Parts of Electrical Drives, Choice of Electrical Drives. Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Multi-quadrant Operation of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Multi-quadrant Operation of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Source (Cost) Control, Cycloconverter Control, Cycloconverter Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Source (CSI) Control, current regulated voltage sourc	· To analyze the performance of induct	tion motor drives under diffe	erent conditions.	
 To discuss typical applications electrical drives in the industry. Module-1 Electrical Drives: Electrical Drives, Advantages of Electrical Drives. Parts of Electrical Drives, Choice of Electrical Drives, Status of DC and ac Drives. Dynamics of Electrical Drives: Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Tordues, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier, Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier, Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier, Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier, Rectifier Control of DC Separately Excited Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control	· To explain the control of induction m	otor, synchronous motor and	d stepper motor drives.	
Module-1 Electrical Drives: Electrical Drives, Advantages of Electrical Drives. Parts of Electrical Drives; Status of DC and ac Drives. Dynamics of Electrical Drives: Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Drives (continued):Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of single phase induction motors. Module-4	To discuss typical applications electric	ical drives in the industry.		
Electrical Drives: Electrical Drives, Advantages of Electrical Drives. Parts of Electrical Drives, Choice of Electrical Drives, Status of DC and ac Drives. Dynamics of Electrical Drives: Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Voltage Source (VSI) Control, Cycloconverter Control, Closed Loop Speed Control of single phase induction motors. Synchronous Motor Drives (continued): Voltage Source Inverter (VSI) Control, Cycloconverter Control, Synchronous Motor Drives (continued): Self-controlled synchronous motor variable speed drives, variable frequency control of multiple synchronous motors. Module-5 Synchronous M	Module-1			
 Bietrich Drives, Entropy Drives, Drive Status of DC and ac Drives. Dynamics of Electrical Drives: Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Fed Form Fully Controlled Rectifier Control of DC Separately Excited Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Series Motor, Supply Harmonics, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage Control, Variable Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from Motor Drives; Operation from fixed frequency supply-starting, synchronous motor variable speed drives, variable Recture, Surger Nource, Current Source (CSI) Control, current regulated voltage source inveretre control, speed control of single phase induction motors	Electrical Drives: Electrical Drives	Advantages of Electrical D	rives Parts of Electrical	Drives Choice of
Dynamics of Electrical Drives: Fundamental Torque Equations, Speed Torque Conventions and Multi-quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Multi-quadrant Operation of DC Separately Excited Motor Fed Form Fully Controlled Rectifier, Rectifier Control of DC Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage Control, Variable Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of multiple synchronous motors. Module-5 Synchronous Motor Drives: (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, S	Electrical Drives. Status of DC and ac I	Drives	Tres. Fulls of Electrical	Dirives, choice of
Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Multi-quadrant Operation of DC Separately Excited Motor Fed Form Fully Controlled Rectifier, Rectifier Control of DC Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fd From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of single phase induction motors. Synchronous Motor Drives: Operation from fixed frequency supply-starting, synchronous motor variable speed drives, variable frequency control of multiple synchronous motors. Module-5 Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machin	Dynamics of Electrical Drives: Funda	mental Torque Equations, Sr	beed Torque Conventions a	nd Multi-quadrant
Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier, Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier, Rectifier Control of DC Separately Excited Motor, Fuer Phase Fully Controlled Rectifier, Rectifier Control of DC Separately Excited Motor, Fuer Phase Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Frequency Control from Voltage Sources. Module-4 Induction Motor Drives (continued): Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control of single phase induction motors. Synchronous Motor Drives: Operation from fixed frequency supply-starting, synchronous motor variable speed drives, variable frequency control of multiple synchronous motors. Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives, Variable Requertance, Permanent Magnet, Important Features of Stepper Motors, Torque Versu Stepping rate Characteristics, Drive Circuits for Steppe	Operation, Equivalent Values of Drive	Parameters, Components of	Load Torques, Nature and	d Classification of
Equalization. Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Multi-quadrant Operation of DC Separately Excited Motor Fed Form Fully Controlled Rectifier, Rectifier Control of DC Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Pdrives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage Control, Variable Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Frequency Control from Voltage Sources. Module-4 Induction Motor Drives (continued): Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control of single phase induction motors. Synchronous Motor Drives: Operation from fixed frequency supply-starting, synchronous motor variable speed drives, variable frequency control of multiple synchronous motors. Module-5 Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives, Variable Reluctance, Permanent Magnet, Important Features of Stepper Motors, Torque Versus Stepping rate Characteristics, Drive Circuits for Stepper Motor.	Load Torques, Calculation of Time a	nd Energy Loss in Transier	nt Operations, Steady Sta	te Stability, Load
Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications, Closed loop Control of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Multi-quadrant Operation of DC Separately Excited Motor Fed Form Fully Controlled Rectifier, Rectifier Control of DC Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of single phase induction motors. Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives: Variable Recuerner, Permanent Magnet, Important Features of Stepper Motors, Torque Versus Stepping rate Characteristics, Drive Circuits for Stepper Motor.	Equalization.			
of Drives. Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier, Rectifier Control of DC Separately Excited Motor Fed Form Fully Controlled Rectifier, Rectifier Control of DC Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Frequency Control from Voltage Sources. Module-4 Induction Motor Drives (continued): Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of single phase induction motors. Synchronous Motor Drives (continued): Self-controlled synchronous motor variable speed drives, variable frequency control of multiple synchronous motors. Module-5 Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives; Variable Reluctance, Permanent Magnet, Important Features of Stepper Motors, Torque Versus Stepping rate Characteristics, Drive Circuits for Stepper Motor.	Control Electrical Drives: Modes of (Operation, Speed Control and	d Drive Classifications, Cl	losed loop Control
Module-2 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor Fed Form Fully Controlled Rectifier, Rectifier Control of DC Separately Excited Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of single phase induction motors. Synchronous Motor Drives (continued): Self-controlled synchronous motor variable speed drives, variable frequency control of multiple synchronous motors. Module-5 Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives, Variable Requency Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives; Varia	of Drives.			
 Direct Current Motor Drives: Controlled Rectifier Fed DC Drives, Single Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Single Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of DC Separately Excited Motor, Three Phase Half Controlled Rectifier Control of DC Separately Excited Motor, Multi-quadrant Operation of DC Separately Excited Motor Fed Form Fully Controlled Rectifier, Rectifier Control of DC Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited DC Motor, Chopper Control of Series Motor. Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Frequency Control from Voltage Sources. Module-4 Induction Motor Drives (continued):Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control of single phase induction motors. Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives; Variable Reluctance, Permanent Magnet, Important Features of Stepper Motors, Torque Versus Stepping rate Characteristics, Drive Circuits for Stepper Motor. 	Module-2			
Module-3 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Frequency Control from Voltage Sources. Module-4 Induction Motor Drives (continued): Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of single phase induction motors. Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives; Variable Reluctance, Permanent Magnet, Important Features of Stepper Motors, Torque Versus Stepping rate Characteristics, Drive Circuits for Stepper Motor.	Excited Motor, Three Phase Fully Con Half Controlled Rectifier Control of DC Excited Motor Fed Form Fully Control Power Factor and Ripple in Motor Curr of Series Motor.	trolled Rectifier Control of C Separately Excited Motor, led Rectifier, Rectifier Cont rent, Chopper Control of Sep	DC Separately Excited M Multi-quadrant Operation trol of DC Series Motor, S parately Excited DC Motor	lotor, Three Phase of DC Separately Supply Harmonics, c, Chopper Control
 Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Frequency Control from Voltage Sources. Module-4 Induction Motor Drives (continued): Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of single phase induction motors. Synchronous Motor Drives: Operation from fixed frequency supply-starting, synchronous motor variable speed drives, variable frequency control of multiple synchronous motors. Module-5 Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives, Sinusoidal PMAC Motor Drives, Brushless DC Motor Drives. Stepper Motor Drives: Variable Reluctance, Permanent Magnet, Important Features of Stepper Motors, Torque Versus Stepping rate Characteristics, Drive Circuits for Stepper Motor. 	Module-3		· · · · · · · · · · · · · · · · · · ·	
Module-4Induction Motor Drives (continued): Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of single phase induction motors. Synchronous Motor Drives: Operation from fixed frequency supply-starting, synchronous motor variable speed drives, variable frequency control of multiple synchronous motors.Module-5Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives, Sinusoidal PMAC Motor Drives, Brushless DC Motor Drives.Stepper Motor Drives: Variable Reluctance, Permanent Magnet, Important Features of Stepper Motors, Torque Versus Stepping rate Characteristics, Drive Circuits for Stepper Motor.	Induction Motor Drives: Analysis Unbalanced Source Voltage and Singl Induction Motor Fed From Non-Sinuso Techniques-Stator Voltage Control, Va	and Performance of Three e Phasing, Operation with idal Voltage Supply, Starting riable Voltage Frequency Co	Phase Induction Motors Unbalanced Rotor Impeda g, Braking, Transient Analy ontrol from Voltage Sourc	s, Operation with ances, Analysis of vsis. Speed Control es.
 Induction Motor Drives (continued): Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of single phase induction motors. Synchronous Motor Drives: Operation from fixed frequency supply-starting, synchronous motor variable speed drives, variable frequency control of multiple synchronous motors. Module-5 Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives, Sinusoidal PMAC Motor Drives, Brushless DC Motor Drives. Stepper Motor Drives: Variable Reluctance, Permanent Magnet, Important Features of Stepper Motors, Torque Versus Stepping rate Characteristics, Drive Circuits for Stepper Motor. 	Module-4			
Module-5 Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC) Motor Drives, Sinusoidal PMAC Motor Drives, Brushless DC Motor Drives. Stepper Motor Drives: Variable Reluctance, Permanent Magnet, Important Features of Stepper Motors, Torque Versus Stepping rate Characteristics, Drive Circuits for Stepper Motor.	Induction Motor Drives (continued Closed Loop Speed Control and Conve Frequency Control from a Current S inverter control, speed control of single Synchronous Motor Drives: Operat speed drives, variable frequency control):Voltage Source Inverter rter Rating for VSI and Cycl ource, Current Source (CS phase induction motors. ion from fixed frequency so of multiple synchronous m	r (VSI) Control, Cycloc oconverter Induction Moto I) Control, current regula supply-starting, synchrono notors.	onverter Control, or Drives, Variable ated voltage source ous motor variable
Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing loadcommutated thyristor inverter, Starting Large Synchronous Machines, Permanent Magnet ac (PMAC)Motor Drives, Sinusoidal PMAC Motor Drives, Brushless DC Motor Drives.Stepper Motor Drives: Variable Reluctance, Permanent Magnet, Important Features of Stepper Motors, TorqueVersus Stepping rate Characteristics, Drive Circuits for Stepper Motor.	Module-5		1	
Industrial Drives: Tavtila Mills Steel Polling Mills Cranes and Hoists Machine Tools	Synchronous Motor Drives (cont commutated thyristor inverter, Startin Motor Drives, Sinusoidal PMAC Moto Stepper Motor Drives: Variable Reluc Versus Stepping rate Characteristics, D Industrial Drives: Tartile Mills, Steel	inued): Self-controlled sy ng Large Synchronous Mac r Drives, Brushless DC Mot ctance, Permanent Magnet, In Prive Circuits for Stepper Mo	nchronous motor drive chines, Permanent Magne or Drives. mportant Features of Stepp otor.	employing load et ac (PMAC) er Motors, Torque

DEPARTMENT OF CIVIL ENGINEERING

Ref: SIET/CV/2019-20/ 1210

Date: 23/08/2019

To,

The Chairman Board of Studies Civil Engineering VTU, Belgavi.

Sub: Proposed suggestion for proposed syllabus 2018- scheme of VTU Syllabus- reg

With reference to the above subject, we have hereby enclosed a list of curricular gaps and the proposed suggestions for some course as of proposed 2018 scheme/ syllabus of civil engineering board VTU, Belagavi.

We highly recommend you the following changes in the list and request you to consider those during the revision of the curriculum and syllabus by the university.

Thank you,

Encl: Circular Gaps and Proposed Suggestions

heshp

Head of the Department Civil Engineering Dept. of Civil Engineering SIET, TUMKUR - 6.

Principal 2019 PRINCIPAL SHRIDEVI INSTITUTE OF GINEERING AND TECHNOLOGY TUMKUR - 572106

Circular Gaps and Proposed Suggestions

- The material tests like tests on aggregates are being carried out in both Building material and testing laboratory and Concrete and Highway materials laboratory. It is recommended to consider tests on aggregates in either one of the laboratories.
- 2. Tests like XRD and SEM analysis of concrete technology are requested to be considered as a part in the Concrete and Highway materials laboratory.
- 3. Some portions of Advanced Concrete Technology is recommended to include in the regular Concrete technology.

(Dr. C. Nagaraja)

epiahershopm

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

TITLE OF THE COURSE: BUILDING MATERIALS T ESTING LABORATORY B.E., III Semester, Civil Engineering [As per Choice Based Credit System (CBCS) scheme]

Course Code	17CVL37	CIE Marks	40
Number of Lecture Hours/Week	03=(1 Hour Instruction + 2 Hours Laboratory)	SEE Marks	60
RBT Levels	L1, L2, L3	Exam Hours	03
	Credits - 02		

Course Objectives: The objectives of this course is to make students to learn:

- 1. Ability to apply knowledge of mathematics and engineering in calculating the mechanical properties of structural materials.
- 2. Ability to function on multi-disciplinary teams in the area of materials testing.
- 3. Ability to use the techniques, skills and modern engineering tools necessary for engineering.
- 4. Understanding of professional and ethical responsibility in the areas of material testing.
- 5. Ability to communicate effectively the mechanical properties of materials.

Experiments:

- 1. Tension test on mild steel and HYSD bars.
- 2. Compression test on mild steel, cast iron and wood.
- 3. Torsion test on mild steel circular sections
- 4. Bending Test on Wood Under two point loading
- 5. Shear Test on Mild steel- single and double shear
- 6. Impact test on Mild Steel (Charpy & Izod)
- 7. Hardness tests on ferrous and non-ferrous metals- Brinell's, Rockwell and Vicker's
- 8. Tests on Bricks and Tiles
- 9. Tests on Fine aggregates-Moisture content, Specific gravity, Bulk density, Sieve analysis and Bulking
- 10. Tests on Coarse aggregates-Absorption, Moisture content, specific gravity, Bulk density and Sieve analysis

11. Demonstration of Strain gauges and Strain indicators

NOTE: All tests to be carried out as per relevant latest BIS Codes

Course outcomes: After successful completion of the course, the students will be able to:

- 1. Reproduce the basic knowledge of mathematics and engineering in finding the strength in tension, compression, shear and torsion.
- 2. Identify, formulate and solve engineering problems of structural elements subjected to flexure.
- 3. Evaluate the impact of engineering solutions on the society and also will be aware of contemporary issues regarding failure of structures due to unsuitable materials.

Question paper pattern:

· Group experiments - Tension test, compression test, torsion test and

-epiaheshbuar

bending test.

- Individual Experiments Remaining tests.
- Two questions are to be set One from group experiments and the other as individual experiment.
- Instructions as printed on the cover page of answer script for split up of marks to be strictly followed.
- All exercises are to be included for practical examination.

Reference Books:

- 1. Davis, Troxell and Hawk, "Testing of Engineering Materials", International Student Edition – McGraw Hill Book Co. New Delhi.
- 2. M L Gambhir and Neha Jamwal, "Building and construction materials-Testing and quality control", McGraw Hill education(India)Pvt. Ltd., 2014
- 3. Fenner, "Mechanical Testing of Materials", George Newnes Ltd. London.
- 4. Holes K A, "Experimental Strength of Materials", English Universities Press Ltd. London.
- 5. Suryanarayana A K, "Testing of Metallic Materials", Prentice Hall of India Pvt. Ltd.New Delhi.
- 6. Kukreja C B, Kishore K. and Ravi Chawla "Material Testing Laboratory Manual", Standard Publishers & Distributors 1996.
- 7. Relevant latest IS Codes

-quahershipuors

TITLE OF THE COURSE: CONCRETE AND HIGHWAY MATERIALS LABORATORY B.E., V Semester, Civil Engineering [As per Choice Based Credit System (CBCS) scheme]

Course Code	17011 59		CIE Montra	40
Course Code	17CVL58	TTerrer	CIE Marks	40
Number of	03=(1 Hour Instruction + 2	Hours	SEE Marks	60
Lecture	Laboratory			
Hours/week	10		Dana II ana	00
Total Number of	40		Exam Hours	03
DDT L angle	11 10 10			
RBT Levels	L1, L2, L3,			
Course chiestings	Credits - 02			
L To loorn the princ	This course will enable studen	a Conoroto	and Highway	atoriala
1. To learn the print	cipies and procedures of testin	g concrete	and Highway II	ateriais
Modulos	experience by conducting the	lesis anu (evolving interent	
Nodules Dest A. Concepto I.	- h			
Fart A: Concrete La	4D			
I. Tests on Cemen	L.			
a. Normal Co				
b. setting tin	ive strength			
c. compressi	we strength			
d. Interiess b	by all permeability test			
2 Tests on Conore	to			
2. Tests off Concre	concrete mix as per IS-10262			
h Tests on fr	resh concrete:			
i shir	nn			
i. siur	inp,			
iii Vee	Ree test			
a Tests on h	ardened concrete:			
i com	pressive strength test			
ii split	tensile strength test			
iii flevi	ural strength test			
d NDT tests	by rebound hammer and puls	e velocity t	est	
3 Tests on Self Co	mpacting Concrete:	e velocity i		
3. Tests of Design of	self compacting concrete			
h slump flor	w test			
o. V-funnel t	est			
d J-Ring tes	t			
e II Box test	t and			
f I Box test	t and			
Part B. High way m	aterials Lab			
1 Tests on Age	regates			
a Aggregate	Crushing value			
h Los Angele	es abrasion test			
c Aggregate	impact test			
d. Aggregate	shape tests (combined index	and anon	larity number)	
2. Tests on Bitu	uminous Materials	und ungu	in ity indition)	
a. Penetra	ation test			
b. Ductilit	ty test			
c. Softeni	ng point test			
d. Specific	c gravity test			
e. Viscosi	ty test by tar viscometer			
f. Bitumi	nous Mix Design by Marshall M	Aethod (De	monstration	
only)				

fraherhour

- 3. Tests on Soil
 - a. Wet sieve analysis
 - b. CBR test

Course outcomes: During this course, students will develop expertise in;

- 1. 1. Conduct appropriate laboratory experiments and interpret the results
- 2. Determine the quality and suitability of cement
- 3. Design appropriate concrete mix
- 4. Determine strength and quality of concrete
- 5. Test the road aggregates and bitumen for their suitability as road material.

6. Test the soil for its suitability as sub grade soil for pavements.

Question paper pattern:

- All are individual experiments
- Instructions as printed on the cover page of answer script for split up of marks to be strictly followed.
- All exercises are to be included for practical examination.

Reference Books:

- 1. 1. M.L.Gambir, "Concrete Manual", Danpat Rai and sons, New Delhi
- 2. Shetty M.S, "Concrete Technology", S. Chand & Co. Ltd, New Delhi.
- 3. Mehta P.K, "Properties of Concrete", Tata McGraw Hill Publications, New Delhi.
- 4. Neville AM, "Properties of Concrete", ELBS Publications, London.
- 5. Relevant BIS codes.
- 6. S K Khanna, C E G Justo and A Veeraragavan, "Highway Materials Testing Laboratory Manual ", Nem Chand Bros, Roorkee
- 7. L R Kadiyali, "Highway Engineering ", Khanna Publishers, New Delhi

-epiahershopenar.

VIII -SEMESTER ADVANCED CONCRETE TECHNOLOGY

Subject Code	: 10CV81	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

lave

less,

Bee

Test

aky,

ity,

sity,

ility

and

elhi.

Importance of Bogue's compounds, Structure of a Hydrated Cement Paste, Volume of hydrated product, porosity of paste and concrete, transition Zone, Elastic Modulus, factors affecting strength and elasticity of concrete, Rheology of concrete in terms of Bingham's parameter.

7 Hour

UNIT - 2

CHEMICAL ADMIXTURES- Mechanism of chemical admixture, Plasticizers and super Plasticizers and their effect on concrete property in fresh and hardened state, Marsh cone test for optimum dosage of super plasticizer, retarder, accelerator, Air-entraining admixtures, new generation superplasticiser.

MINERAL ADMIXTURE-Fly ash, Silica fume, GCBS, and their effect on concrete property in fresh state and hardened state.

6 Hours

UNIT-3

MIX DESIGN - Factors affecting mix design, design of concrete mix by BIS method using IS10262 and current American (ACI)/ British (BS) methods. Provisions in revised IS10262-2004.

6 Hours

UNIT-4

DURABILITY OF CONCRETE - Introduction, Permeability of concrete, chemical attack, acid attack, efflorescence, Corrosion in concrete. Thermal conductivity, thermal diffusivity, specific heat. Alkali Aggregate Reaction, IS456-2000 requirement for durability.

7 Hours

131 resh

PART - B

UNIT-5

RMC concrete - manufacture, transporting, placing, precautions, Methods of concreting- Pumping, under water concreting, shotcrete, High volume fly ash concrete concept, properties, typical mix

Self compacting concrete concept, materials, tests, properties, application and Typical mix.

6 Hours

UNIT - 6

Fiber reinforced concrete - Fibers types and properties, Behavior of FRC in compression, tension including pre-cracking stage and post-cracking stages, behavior in flexure and shear, Ferro cement - materials, techniques of manufacture, properties and application

7 Hours

UNIT - 7

Light weight concrete-materials properties and types. Typical light weight concrete mix High density concrete and high performance concrete-materials, properties and applications, typical mix.

6 Hours

UNIT - 8

Test on Hardened concrete-Effect of end condition of specimen, capping, H/D ratio, rate of loading, moisture condition. Compression, tension and flexure tests. Tests on composition of hardened concrete-cement content, original w/c ratio. NDT tests concepts-Rebound hammer, pulse velocity methods.

7 Hours

TEXT / REFERENCE BOOKS:

- 1. **Properties of Concrete-** Neville, A.M. ELBS Edition, Longman Ltd., London
- Concrete Technology- M.S. Shetty
- 3. Concrete Technology- A.R. Santhakumar,-Oxford University Press.
- Concrete- P.K. Mehta, P J M Monteiro, Prentice Hall, New Jersey (Special Student Edition by Indian Concrete Institute Chennai)
- 5. ACI Code for Mix Design
- 6. IS 10262-2004

-epicherstoloura

7. Concrete Mix Design- N. Krishna Raju - Sehgal Publishers

- 8. Concrete Manual- Gambhir M.L.- Dhanpat Rai & Sons, New Delhi
- 9. Advanced Concrete Technology Processes- John Newman, Ban Seng Choo, - London.
- 10. Advanced Concrete Technology Constituent materials- John Newman, Ban Seng Choo- London
- 11. Non-Destructive Test and Evaluation of Materials- J.Prasad, C G K. Nair,-Mc Graw Hill.
- 12 High Performance Concrete- Prof Aitcin P C- E and FN, London.
- 13. Properties of Fresh Concrete- Power T.C.- E and FN, London

DESIGN AND DRAWING OF STEEL STRUCTURES

Subject Code	:10CV82	IA Marks	: 25
No. of Lecture Hours/Week	: 02 (T) + 3 (D)	Exam Hours	: 04
Total No. of Lecture Hours	: 26 (T) + 39 (D)	Exam Marks	: 100

PART - A

IDRAWINGS TO BE PREPARED FOR GIVEN STRUCTURAL DETAILS

UNIT - 1

CONNECTIONS: Bolted and welded, beam-beam, Beam-column, seated, Milfened and un-stiffened.

UNIT - 2

COLUMNS: Splices, Column-column of same and different sections. Lacing and battens.

UNIT - 3

I II' + 4

OLUMN BASES: Slab base and gusseted base, grillage foundation.

08 (T) + 15 (D)

PART - B

Design and drawing of i) Bolted and welded plate girder ii) Roof Truss (Forces in the members to be given)

133

Sri Shridevi Charitable Trust (R.) DEVI INSTITUTE OF ENGINEERING & TECHNOL

(Recognised by Govt. of Karnataka, Affiliated to VTU, Belagavi and Approved by AICTE, New Delhi) Sira Road, Tumakuru - 572 106. Karnataka.

An ISO 9001:2015 Certified Institution

Phone: 0816-2212629 | Fax: 0816-2212628 | Email: info@shrideviengineering.org | Web: http://www.shrideviengineering.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Ref: SIET/2019-20/ECE/ 121

26-08-2019

To

The Chairman Board of Studies (BOS) Electronics & Communication Engineering VTU, BELGAVI

Respected Sir,

Sub: Suggestion for proposed 2018 scheme of VTU syllabus - Reg.

With reference to the above cited subject, it is herewith enclosed curricular gaps and the proposed suggestions for some courses in the proposed 2018 scheme / syllabus of Electronics & Communication Engineering board of Visvesvaraya Technological University, Belagavi.

We request you to kindly consider the following points during the revision of the curriculum and syllabus by the University.

Curricular Gaps and proposed suggestion:

We suggest the BOS member to remove Module-2 from the Basic Electronics-18ELN14/24 of 2018 scheme & syllabus as the topic is little bit hard to understand at first year level and introduce basic topic related to basics of communication, which gives good exposure to students in the area of communication which is very much essential in current technology trends, during the revision of the curriculum and syllabus by the University.

Thanking You,

Ilead of the Department Electronics & Communication Engineering

> HOD Dept of E&C SIET, Tumkur-6

Principal SIET, TUMAKURU

PRINCIPAL SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY TUMKUR - 572106

BASIC ELECTRONICS

Semester	: 1/11	CIE Marks	: 40
Course Code	: 18ELN14/24	SEE Marks	: 60
Teaching Hours/week (L:T:P)	: 2:2:0	Exam Hours	: 03
Traching Hours often (Dirtie)	Credits · 03		-

Course Objectives:

This course will enable students to:

- Understand characteristics, operation and applications of the diodes, bipolar junction transistors, field effect transistors, SCRs and operational amplifiers in electronic circuits.
- Understand different number systems and working of fundamental building blocks of digital circuits.
- Understand the principle of basic communication system and mobile phones.

MODULE-1

Semiconductor Diodes and Applications:

p-n junction diode, Equivalent circuit of diode, Zener Diode, Zener diode as a voltage regulator, Rectification-Half wave rectifier, Full wave rectifier, Bridge rectifier, Capacitor filter circuit (2.2, 2.3, 2.4 of Text 1).

Photo diode, LED, Photo coupler. (2.7.4, 2.7.5, 2.7.6 of Text 1).

78XX series and 7805 Fixed IC voltage regulator (8.4.4 and 8.4.5 of Text 1). (RBT Levels : L1, L2 & L3)

MODULE-2

FET and SCR:

Introduction, JFET: Construction and operation, JFET Drain Characteristics and Parameters, JFET Transfer Characteristic, Square law expression for I_p , Input resistance, MOSFET: Depletion and Enhancement type MOSFET-Construction, Operation, Characteristics and Symbols, (refer 7.1, 7.2, 7.4, 7.5 of Text 2), CMOS (4.5 of Text 1).

Silicon Controlled Rectifier (SCR) – Two-transistor model, Switching action, Characteristics, Phase control application (refer 3.4 upto 3.4.5 of Text 1).

(RBT Levels : L1, L2 & L3)

MODULE-3

Operational Amplifiers and Applications:

Introduction to Op-Amp, Op-Amp Input Modes, Op-Amp Parameters-CMRR, Input Offset Voltage and Current, Input Bias Current, Input and Output Impedance, Slew Rate (12.1, 12.2 of Text 2).

(69)