ODD SEM-2023-24

SIRA ROAD, TUMKUR- 572 106.

Department of Physics

Course Outcomes and COs-POs Mapping

Batch 2023-24

Semester – I

Subject	: Applied Physics for CS Stream	Subject Code: BPHYS102
	Course Outcomes	
C01	Describe the principles of LASERS and Optical fibers	and their relevant applications.
CO2	Discuss the basic principles of the Quantum Mechan Computing.	ics and its application in Quantum
CO3	Summarize the essential properties of superconductors	s and its applications in qubits.
CO4	Illustrate the application of physics in design and data	analysis.
CO5	Practice working in groups to conduct experiments in honest measurements.	n physics and perform precise and

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI I	NSTIT	UTE	OF EN	GINE	ERING	AND ?	ГЕСНІ	NOLOG	Y		
FACULTY	NAM	E	Dr SAD	ASHIV	AIAE	IA P J	/ DE	RA PUS	HPAL	ATHA	н			
BRAN	СН		CS			A	CAD	EMIC Y	EAR		2023	-24		
COURSE	B.I	E	SEM	ESTEI	2	Ι		SECTIO	N		A & B			
SUBJECT		APPL	JED PH ST	IYSICS REAN	S FOR I	CSE		SUBJE	ст со	DDE	BPHY	S102		
CO & PO MAPPING														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 P													
C01	3	2										2		
CO2	3	3				·						2		
CO3	3	3									•	2		
CO4	3	2	1		1							2		
CO5	3	2	1		2			3	3			2		
AVERAGE	3	2.4	1		1.5			3	3			2		
	<u></u>	<u> </u>	OVERA		APPIN	G OF	SUB.	JECT	<u>, , , , , , , , , , , , , , , , , , , </u>			2.27		

CO AND PO ATTAINMENT

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	59.44	1.78	1.19			÷							1.19
CO2	74.15	2.22	2.22		•								1.48
CO3	43.76	1.31	1.31										0.87
CO4	66.32	1.99	1.33	0.66		0.66							1.33
CO5	88 39	2.65	1.77	0.88	115	1.77	•		2.65	2.65			1.77
AVERAGE	66.41	1.99	1.56	0.77	•	1.21			2.65	2.65			1.33
	00.41	1.77	1.00		<u>, </u>	<u></u>	<u>, </u>	FIN	AL AT	TAIN	MENT I	LEVEL	1.74

FACULTY

Cor

HOD H.O.D Dept. of Physics S.I.E.T., TUMKUB -6.

BRINGER -

SEM: I	То	tal Stre	noth	122		-	Cour	se:	Appli	ed Phy	sics for C	SE Stream	10 10 20	BPHYSI	02	1.38.15			6.000		2023-202	4		110	e			Lan Barris		
SEC: A&B	1	IA TEST	rı	1	IA TE	ST 2	Court	.	A TES	тз		PRACTICAL COMPONENT		SSIGNEM	ENT (10M	ŋ		SEE MA	RKS(50)		1020-202	Total C	os ATTAIN	MENT			% of	I Individual	со	
USN	CO2	CO3	TOTAL	CO2	CO3	TOTAL	CO2	C03	COI	CO4	TOTAL	(25) CO5	COI	CO2	CO3	CO4	COI	CO2	CO3	C04	CO1=35	CO2=75	CO3=75	CO4=35	CO5=25	CO1	C02	C03	CO4	C05
15V23C5001	12	8	20	20	0 4	24	1 20		11	12	43	23	2.5	2.5	2.5	2.5	5.75	5.75	5.75	5.75	19.25	60.25	20.25	20.25	23	55	80.33333	27	57.85714	92
ISV23CS002	17	4	21	1	6 11	27	7 20		20	11	51	22	2.5	2.5	2.5	2.5	6.5	6.5	6.5	6.5	29	62	24	20	22	82.857143	82.66667	32	57.14286	88
1SV23CS004	13	20	38	2	0 20	40	20		18	19	57	25	2.5	2.5	2.5	2.5	12	12	12	12	32.5	72.5	54.5	33.5	25	92.857143	96.66667	72.66667	95.71429	100
15V23C5005	14	9	23	1	4 12	2 26	5 17	1	20	12	49	23	2.5	2.5	2.5	2.5	9.5	9.5	9.5	9.5	32	57	33	24	23	91.428571	76	44	68.57143	92
1SV23CS006	16	18	34	1	6 18	34	4 18	3	20	15	53	22	2.5	2.5	2.5	2.5	5.25	5.25	5.25	5.25	27.75	57.75	43.75	22.75	22	79.285714	77	58.33333	65	88
15V23C5007	14	14	28	1	4 20	34			14	13	43	23	2.5	2.5	2.5	2.5	7.5	7.5	7.5	7.5	24	24.5	175	23	23	68.571429	72	58.66667	65.71429	92
1SV23CS009	18	14	32	2	0 1	3	5 20)	18	11	49	24	2.5	2.5	2.5	2.5	11.25	11.25	11.25	11.25	31.75	71.75	42.75	24.75	24	90.714286	95.66667	57	70.71429	92
1SV23CS010	17	19	36	5 1	8 20	38	8 18	3	18	18	54	24	2.5	2.5	2.5	2.5	7.5	7.5	7.5	7.5	28	63	49	28	24	80	84	65.33333	80	96
15V23CS011	4	2	6		2 1		3 8	3	11	6	35	15	2.5	2.5	2.5	2.5	2.75	2.75	2.75	2.75	16.25	29.25	8.25	11.25	15	46.428571	39	11	32.14286	60
15V23C5012	13	1 7	20		8 3	2 10	0 19)	. 9	0	28	20	2.5	2.5	2.5	2.5	5.25	5.25	5.25	5.25	16.75	47.75	16.75	7.75	20	47.857143	63.66667	22.33333	22.14286	84
1SV23CS014	12	1.001	13	3 1	2 9	2	1 16	5	1	2	19	19	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	8	47	17	9	19	22.857143	62.66667	22.66667	25.71429	76
1SV23CS015	12	4	16	5 1	9 1	2 3:	1 20		10	16	46	25	2.5	2.5	2.5	2.5	8.25	8.25	8.25	8.25	20.75	61.75	26.75	26.75	25	59.285714	82.33333	35.66667	76.42857	100
1SV23CS016	19		18		8 4		2 20		11	13	45	24	2.5	2.5	2.5	2.5	7.25	7.25	7.25	7.25	20.75	56.75	22.75	22.75	24	59.285714	75.66667	30.33333	65	96
15V23CS018	20	10	36	5 2	0 20	0 4	0 20	5	20	20	60	25	2.5	2.5	2.5	2.5	10	10	10	10	32.5	72.5	48.5	32.5	25	92.857143	96.66667	64.66667	92.85714	100
1SV23CS019	20	18	38	3 1	9 20	3	9 20		18	0	38	22	2.5	2.5	2.5	2.5	7.5	7.5	7.5	7.5	28	69	48	10	22	80	92	64	28.57143	88
ISV23CS020	20	20	40	2	0 1	5 3	6 20	10	19	20	59	24	2.5	2.5	2.5	2.5	10.5	10.5	10.5	10.5	32	73	49	33	24	91.428571	97.33333	65.33333	94.28571	96
15V23CS021	19	20	39	1 1	6 1	0 2	6 17	7	19	6	31	24	2.5	2.5	2.5	2.5	7.75	7.75	9.25	7.75	30.75	50.75	22.25	31.75	24	87.857143	67.66667	93	90.71429	96
15V23CS023		1 0	1	3 1	7 1	2 2	9 17	7	16	14	47	17	2.5	2.5	2.5	2.5	3.25	3.25	3.25	3.25	21.75	46.75	23.75	19.75	.17	62.142857	62.33333	31.66667	56.42857	68
15V23CS024	16	5 . 9	25	5 2	0	4 2	4 20	D	13	6	39	16	2.5	2.5	2.5	2.5	7	7	7	7	22.5	65.5	22.5	15.5	16	64.285714	87.33333	30	44.28571	64
LSV23CS025	17	7 14	31		2 1	4 2	6 16	5	16	12	37	18	2.5	2.5	2.5	2.5	8	8	8	8	26.5	55.5	38.5	15.5	18	75.714286	74	51.33333	44.28571	72
15V23C5026	1		30	4	4	2	6 18	8	12	13	43	19	2.5	2.5	2.5	2.5	2.75	2.75	2.75	2.75	17.25	29.25	9.25	18.25	19	49.285714	57.33333	81.33333	52.14286	76
LSV23CS028	20	20	40	0 2	0 2	0 4	0 20	D	16	20	56	25	2.5	2.5	2.5	2.5	8.25	8.25	8.25	8.25	26.75	70.75	50.75	30.75	25	76.428571	94.33333	67.66667	87.85714	100
LSV23CS029	1	1 10	2:	1 2	0 2	0 4	0 20	0	8	20	48	25	2.5	2.5	2.5	2.5	6.5	6.5	6.5	6.5	17	60	39	29	25	48.571429	80	52	82.85714	100
ISV23CS030	10				9 1	2 3	1 20	0	10	20	46	23	2.5	2.5	2.5	2.5	5.5	5.5	7.5	7.5	16	58	37	30	23	45.714286	77.33333	49.33333	85.71429	92
ISV23CS032	1	B	3 1:	1 1	7 1	2 2	9 16	6	7	15	38	23	2.5	2.5	2.5	2.5	5.25	5.25	5.25	5.25	14.75	48.75	22.75	22.75	23	42.142857	65	30.33333	65	92
1SV23CS033	1	5	7 2	3 2	0 1	9 3	9 20	0	8	11	39	22	2.5	2.5	2.5	2.5	7.75	7.75	7.75	7.75	18.25	66.25	36.25	21.25	22	52.142857	88.33333	48.33333	60.71429	88
15V23C5034	1	9 1	2 3:	1 2	1	8 3	8 20	0	8	20	48	23	2.5	2.5	2.5	2.5	8.5	8.5	8.5	8.5	19	70	41	31	23	54.285714	93.33333	54.66667	88.57143	92
15V23CS035	1	9 . 2	3	9 2	20 2	0 4	0 20	0	20	20	60	25	-2.5	2.5	2.5	2.5	10.75	10.75	10.75	10.75	33.25	72.25	53.25	33.25	25	22.837143	96.33333	71	95	100
1SV23CS037		3	9 1	2 2	20 1	2 3	2 20	0	0	19	39	25	2.5	2.5	2.5	2.5	8.5	8.5	8.5	8.5	11	54	32	30	25	31.428571	72	42.66667	85.71429	100
15V23CS038	1.	4	9 2	3 2	20	4 2	4 1	1	4	16	31	23	2.5	2.5	2.5	2.5	4.75	4.75	4.75	4.75	11.25	52.25	20.25	23.25	23	32.142857	69.66667	27	66.42857	92
15V23C5039	1	6 1	3 2	9 7	20 2	8 3	0 20	0	19	20	59	25	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	32.5	69.5	46.5	16	19	92 857143	38.66667	74.66667	45.71429	76
15V23CS041	1	6 1	4 3	0 1	19 2	0 3	9 20	0	• 11	20	51	24	2.5	2.5	2.5	2.5	10	10	10	10	23.5	67.5	46.5	32.5	24	67.142857	90	62	92.85714	96
1SV23CS042	1	6 1	7 3	3 2	20 1	9 3	9	16	20	18	54	23	2.5	2.5	2.5	2.5	10.25	10.25	10.25	10.25	32.75	48.75	64.75	30.75	23	93.571429	65	86.33333	87.85714	92
15V23C5043	2	0 2				8 3	8 20	0	20	20	60	24	2.5	2.5	2.5	2.5	9.75	9.75	9.75	9.75	32.25	72.25	50.25	32.25	24	92.142857	96.33333	67	92.14286	96
15V23CS044	1	1	2	3 1	16	4 2	0 10	6	15	2	33	19	2.5	2.5	2.5	2.5	6.75	6.75	6.75	6.75	24.25	42.25	15.25	11.25	19	69.285714	56.33333	20.33333	32.14286	76
1SV23CS046	1	6 1	6 3	2 2	20	2 2	2 20	0	0	14	34	25	2.5	2.5	2.5	2.5	9.25	9.25	9.25	9.25	11.75	67.75	29.75	25.75	25	33.571429	90.33333	39.66667	73.57143	100
1SV23CS047	2	0 2	0 4	0 7	20 2	0 4	0 20	0	20	20	60	25	2.5	2.5	2.5	2.5	11.75	11.75	11.75	11.75	34.25	74.25	54.25	34.25	25	97.857143	99	72.33333	97.85714	100
15V23C5048 15V23C5049	1	5	2	6 1	19 2	7 1	9 1	8	0	0	18	16	2.5	2.5	2.5	2.5	9.25	9.25	9.25	9.25	11.75	68.75	37.75	11.75	23	33.571429	91.66667	50.33333	33.57143	92
15V23CS050		1	0	1 1	11	3 1	.4	6	2	3	11	9	2.5	2.5	2.5	2.5	1.25	1.25	1.25	1.25	5.75	21.75	6.75	6.75	9	16.428571	29	9	19.28571	36
1SV23CS051	1	8 1	1 2	9 1	19 2	0 3	9 20	0	18	20	58	25	2.5	2.5	2.5	2.5	9.5	9.5	9.5	9.5	30	69	43	32	25	85.714286	92	57.33333	91.42857	100
15V23CS052	-	0	0	0	8	5 1	3 20	0	16	0	36	16	2.5	2.5	2.5	2.5	2.25	2.25	2.25	2.25	20.75	32.75	9.75	4.75	16	59.285714	43.66667	13	13.57143	64
15V23C5053	1	9 1	7 2	6 1	16 2	0 3	6 1	6	19	20	59	23	2.5	2.5	2.5	2.5	7.5	7.5	7.5	7.5	32.5	/1.5	46.5	33.5	25	92.857143	95.33333	62 66667	95.71429	100
15V23CS055	2	0	3 2	3	10	1 1	1 1	8	5	4	27	19	2.5	2.5	2.5	2.5	5.5	5.5	5.5	5.5	13	56	12	12	19	37.142857	74.66667	16	34.28571	76
1SV23CS056	1	8 1	8 3	6	20 2	0 4	10	16	10	20	46	25	2.5	2.5	2.5	2.5	8.25	8.25	8.25	8.25	20.75	48.75	64.75	30.75	. 25	59.285714	65	86.33333	87.85714	100
15V23CS057	1	5	1 1	6	5	4	9 1	2	12	16	24	22	2.5	2.5	2.5	2.5	4.75	4.75	4.75	4.75	19.25	39.25	12.25	7.25	22	55	52.33333	16,33333	20.71429	88
15V23C5058 1SV23C5059	1	8 1	8 3	6	20 1	8 3	8 2	0	20	20	60	25	2.5	2.5	2.5	2.5	9.5	9.5	9.5	9.5	32	70	48	32	25	91.428571	93.33333	49.33333	91.42857	100
15V23CS060		2	0	2	12	2 1	4	7	5	20	35	23	2.5	2.5	2.5	2.5	2.25	2.25	2.25	2.25	9.75	25.75	6.75	24.75	23	27.857143	34.33333	9	70.71429	92
1SV23CS061	2	0 2	0 4	0	19 1	2 3	1 2	0	3	3	26	22	2.5	2.5	2.5	2.5	6.75	6.75	6.75	6.75	12.25	68.25	41.25	12.25	22	35	91	55	35	88
15V23C5062	1	9 1	4 2	3	17 1	9 3	16 7	0	16	20	A 56	22	2.5	2.5	2.5	2.5	9,25	9,25	9,25	9.25	27.75	67.75	40	31 75	22	31.428571	54.66667	53.33333	31.42857	88
1SV23CS064	1	1	A	-	19 1	2 3	1 1	7	4	0	21	22	2.5	2.5	2.5	2.5	7.5	7.5	7.5	7.5	14	46	22	10	23	40	61.33333	29.33333	28.57143	88
1SV23CS065	1	1	1 1	2	20	9 2	29 2	0	4	10	34	23	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	11	58	17	17	23	31.428571	77.33333	22.66667	48.57143	92
1SV23CS066	-	6 1	7 2	3	19 2	0 3	9 2	0	10	20	50	25	2.5	2.5	2.5	2.5	8.5	8.5	8.5	8.5	21	56	48	31	25	60	74.66667	64	88.57143	100
15V23C5067	-	0 1	0 4	0	13	4 7	16 2	0	18	20	58	25	2.5	2.5	2.5	2.5	4.5 9.75	4.5	4.5	4.5 9.75	30.25	64.25	46.25	32.25	16	40	48	12	31.42857	64
15V23CS069	2	0 2	0 4	10	20 2	0 4	10 2	0	14	20	54	25	2.5	2.5	2.5	2.5	10.25	10.25	10.25	10.25	26.75	72.75	52.75	32.75	25	76.428571	97	70.33333	93.57143	100
1SV23CS070		8 1	0 1	8	17 2	0 3	37 2	0	8	20	. 48	23	2.5	2.5	2.5	2.5	7.5	7.5	7.5	7.5	18	55	40	30	23	51.428571	73.33333	53.33333	85.71429	92
1SV23CS071	1	7 1	6 3	3	20 2	0 4	0 2	0	20	20	60	23	2.5	2.5	2.5	2.5	8.5	8.5	8.5	8.5	31	68	47	31	23	88.571429	90.66667	62.66667	88.57143	92

V23CS072		2		4 :	10 1	6	26	16		8	17	41	25	2.5	2.5	2.5	2.5	8.5	8.5	8.5	8.5	19	39	29	28	25	54 28571	5	29 6666	7 80	1 .
V23CS073	20	2	2	2	8	1	9	16		0	13	29	13	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	7	51	10	20	13	34.203/1	5	12 2222	80	1
2305074	10	2	1	2 3	20	5	25	20		0	13	33	23	2.5	2.5	2.5	2.5	5	5	5	5	7.5	57.5	14.5	20.5	22	21 43957	70 000	10.0000	3 57.14286	1
23CS075	14	4	1	8 2	0 1	2	32	12		8	16	36	23 .	2.5	2.5	2.5	2.5	7.25	7.25	7.25	7.25	17.75	55 75	25 75	25 75	22	E0 7142037	70.0000	19.3333.	3 58.5/143	
23CS076	19	10	2	9 3	20 2	0	40	20		20	20	60	24	2.5	2.5	2.5	2.5	10.5	10.5	10.5	10.5	33	72	43	23.73	23	04 395 71	14.33333	34.3333.	3 73.57143	
3CS077	15	6	2	1	0	0	0	13		4	0	17	16	2.5	2.5	2.5	2.5	5	5	5	5	11.5	35.5	13 5	75	16	32 95714	47.2222	57.3333.	3 94.28571	1
3CS078	20	19	3	9 2	0 2	0	40	20		20	16	56	25	2.5	2.5	2.5	2.5	10.5	10.5	10.5	10.5	33	73	57	20	25	32.85/14	47.33333	1	8 21.42857	
3CS079	20	10	3	0 2	0 2	0	40	20		13	12	45	25	2.5	2.5	2.5	2.5	10.25	10.25	10.25	10.25	25.75	72 75	42 75	24 75	25	73 571430	97.33333	69.3333	3 82.85714	1
23CS080	20	14	3	4 2	0 2	0	40	20		20	20	60	25	2.5	2.5	2.5	2.5	8.5	8.5	8.5	85	31	71	42.75	24.73	25	/3.5/1429	9/	5	7 70.71429	1
23CS081	18	7	2	5 2	0 1	1	31	20		8	. 16	44	24	2.5	2.5	2.5	2.5	8	8	8	8	18.5	69.5	4J	26.5	25	88.5/1429	94.66667	60	88.57143	1
3CS082	19	20	3	9 2	0 2	0	40	20	26111	20	20	60	25	2.5	2.5	2.5	2.5	11.25	11.25	11.25	11.25	22.75	73.75	20.3	20.5	24	52.85/143	91.33333	30	8 75.71429	
3CS083	11	16	2	7 1	3 1	7	30	14		10	9	33	24	2.5	2.5	2.5	2.5	5.75	5.75	5.75	5 75	19.25	12.75	33./5	33./5	25	96.428571	97	71.6666	7 96.42857	1
3C5084	18	2	20	1	7 1	0	27	16	1000	12	7	35	23	2.5	2.5	2.5	2.5	6.75	6.75	6.75	6.75	21.25	40.25	41.25	17.25	24	52.142857	61.66667	55	5 49.28571	
3CS085	18	18	3	5 1	9 1	7	36	20		8	16	44	25	2.5	2.5	25	25	12	17	17	0.75	21.25	60.25	21.25	16.25	23	60.714286	80.33333	28.33333	46.42857	
3CS086	15	6	2:	1 1	6 1	1	27	18	-0.4	8	20	46	24	2.5	2.5	25	2.5	10.75	10.75	10.75	10.75	22.5	/1.5	49.5	30.5	25	64.285714	95.33333	66	5 87.14286	. 10
3CS087	20	20	40	2	0 20	D	40	20	1.00	20	20	60	25	25	25	25	2.5	9 5	9.5	10.75	10.75	21.25	62.25	30.25	33.25	24	60.714286	83	40.33333	95	
3CS088	10	2	13	1	5 1	9	34	20	1.1.1.1.2	7	20	47	23	2.5	25	25	25	8.25	0.5	0.3	8.5	31	/1	51	31	25	88.571429	94.66667	68	88.57143	10
CS089	11	0	1:	2	0	5	25	20	10 10 10	4	20	44	23	25	25	2.5	2.5	0.25 A 5	0.25	0.25	0.25	17.75	55.75	31.75	30.75	23	50.714286	74.33333	42.33333	87.85714	
3CS090	10	6	16	2	0 :	7	27	20		8	10	38	15	25	2.5	2.5	2.5	4.5	4.5	4.5	4.5	11	58	12	27	23	31.428571	77.33333	16	77.14286	
3CS091	17	9	26	2	0 0	5	26	20	1000	4	20	44	23	2.5	2.5	2.5	2.5	3	5	5	5	15.5	57.5	20.5	17.5	15	44.285714	76.66667	27.33333	50	
CS092	4	0	-	1	1	3	14	20		7	10	37	20	2.5	2.5	2.5	2.5	1.25	7.25	7.25	7.25	13.75	66.75	24.75	29.75	. 23	39.285714	89	33	85	
CS093	8	4	12	2	0	1	24	20		20	4	44	20	2.5	2.5	2.5	2.5	5	5	5	5	14.5	42.5	10.5	17.5	20	41.428571	56.66667	14	50	
CS094	1	0	1	-	4 0		4	0		20	15		15	2.5	2.5	2.5	2.5	8.25	8.25	8.25	8.25	30.75	58.75	18.75	14.75	23	87.857143	78.33333	25	42.14286	1.1
C\$095	12	8	20	1	4 17		26	20		20	15	35	15	2.5	2.5	2.5	2.5	3	3	3	3	25.5	10.5	5.5	20.5	15	72.857143	.14	7.333333	58.57143	
C\$096	14	18	27	1 2	1 17		20	20		12	20	40	23	2.5	2.5	2.5	2.5	6.5	6.5	6.5	6.5	9	55	29	29	23	25.714286	73.33333	38.66667	82.85714	
C\$097	0	19	27	1	c 10		32	12		12	20	52	25	2.5	2.5	2.5	2.5	9.75	9.75	9.75	9.75	24.25	66.25	42.25	32.25	25	69.285714	88.33333	56.33333	92,14286	10
CS097	10	10	27				26	12		12	8	32	22	2.5	2.5	2.5	2.5	8	8	8	8	22.5	47.5	38.5	18.5	22	64.285714	63.33333	51 33333	52 85714	
00000	19	14	33	1	11	-	34	20		12	20	52	25	2.5	2.5	2.5	2.5	8.25	8.25	8.25	8.25	22.75	66.75	41.75	30.75	25	65	89	55 66667	87 85714	10
C\$100	20	20				2	6	6		4	6	16	15	2.5	2.5	2.5	2.5	2	2	2	2	8.5	10.5	10.5	10.5	15	24,285714	14	14	30	10
000	20	20	40	2	20	-	40	20		12	12	44	· 24	2.5	2.5	2.5	2.5	10	10	10	10	24.5	72.5	52.5	24.5	24	70	96 66667	70	30	
CS101	9	9	18	1	2 14	-	26	1/	-	0	10	27	23	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	7	45	30	17	23	20	60	40	49 57142	
CS102	11	14	25	1	/	-	26	20		8	12	40	23	2.5	2.5	2.5	2.5	8.75	8.75	8.75	8.75	19.25	61.25	32.25	23.25	23	55	81 66667	42	66 43957	
CS103	14	0	. 14	14	1 16	-	30	20	-	8	20	48	23	2.5	.2.5	2.5	2.5	9	9	9	9	19.5	59.5	27.5	31.5	23	55 714286	79 33333	36 66667	00.42037	
CS104	15	16	31	20	19	-	39			-	A	10.5	24	2.5	2.5	2.5	2.5	5.25	5.25	5.25	5.25	7.75	42.75	42.75	7.75	24	22 142857	57	50.00007	22 14290	9
CS105	. 3	2	8	1	3	-	18	20		12	19	51	22	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	19	45	15	26	22	54 285714	60	3/	22.14280	9
CS106	. 0	0	0	10	6		24	18	-	1	0	19	15	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	8	43	13	7	15	22 957142	57 22222	17 33333	74.28571	8
CS107	. 3	4	7		5	1	12	16	-	2	15	33	16	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	9	33	16	22	16	25 714286	37.33333	21 22222	20	. 6
CS108	9	2	11	20	5		25	9		0	16	25	21	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	7	45	14	. 23	21	20.714200	44	19 66667	62.85/14	6
CS109	16	7	23	16	16	-	32	20	1011	12	19	51	24	2.5	2.5	2.5	2.5	9.75	9.75	9.75	9.75	24.25	64.25	35.25	31.25	24	69 285714	95 66667	10.0000/	65./1429	8
CS110	9	9	18	16	11		27	9		13	9	31	24	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	20	41	27	16	24	57 143957	63.0000/	4/	89.285/1	9
CS111	10	9	19	20	8		28	20	1	9	9	38	23	2.5	2.5	2.5	2.5	7.75	7.75	7.75	7.75	19.25	60.25	27.25	19.25	24	57.142057	90 333333	36	45.71429	9
CS112	7	3	10	20	9	1	29	20	-	11	4	35	23	2.5	2.5	2.5	2.5	5.5	5.5	5.5	5.5	19	55	20	12	23	54 395714	80.333333	36.33333	55	9
CS113	19	18	37	20	15		35	20		18	20	58	23	2.5	2.5	2.5	2.5	10.75	10.75	10.75	10.75	31.25	72.25	46.25	33.25	23	90 205714	73.33333	20.00067	34.28571	. 9
CS114	19	17	36	20	18		38	20		20	20	60	22	2.5	2.5	2.5	2.5	9.75	9.75	9.75	9.75	32.25	71 25	47.25	22.25	23	03.205/14	90.333333	01.00067	95	9
\$115	4	8	12	17	9		26	20		17	20	57	23	2.5	2.5	2.5	2.5	8.5	8.5	8.5	8.5	28	52	28	32.23	22	92.142857	95	63	92.14286	8
\$116	16	16	32	18	18		36	20		11	15	46	25	2.5	2.5	2.5	2.5	9	9	9	9	225	65.5	45.5	205	23	80	69.33333	37.33333	88.57143	9
S117	7	7	. 14	13	2		15	13		8	9	30	16	2.5	2.5	2.5	2.5	5.5	5.5	55	55	16	41	45.5	26.5	25	64.285714	87.33333	60.66667	75.71429	10
\$118	6	15	21	16	4		20	10		0	0	10	22	2.5	2.5	2.5	2.5	5	5	5	5	75	20.5	26.5	1/	16	45.714286	54.66667	22.66667	48.57143	6
5119	11	17	28	20	17		37	20		10	20	50	25	2.5	2.5	2.5	25	10	10	10	10	22.5	59.5	20.5	7.5	22	21.428571	52.66667	35.33333	21.42857	. 8
\$120	3	0	3	13	0		13	0	1	8	16	24	16	2.5	2.5	2.5	25	3.25	3.25	3.25	2.25	12.5	03.5	46.5	32.5	25	64.285714	84.66667	62	92.85714	10
S121	11	1	12	20	7		27	20		0	8	28	23	25	25	25	2.5	6.5	5.25	3.25	3.25	13.75	21.75	5.75	21.75	16	39.285714	29	7.666667	62.14286	6
\$122	17	10	27	17	17		34	18		8	19	44	24	25	25	25	2.5	0.5 E	0.5	0.5	0.5	9	60	17	17	23	25.714286	80	22.66667	48.57143	92
										-				6.3	4.5	6.2	4.3	2 1	2	5	5	15.5	50 5	24 5	26 5	24	44 305344		Transfer to the second second		

CR

HOD H.O.D Dept. of Physics S.I.E.T., TUMKUR -6.

Munskink Limpite PRINCIPAL SIET. TUMKUR.

SIRA ROAD, TUMKUR- 572 106.

Department of Physics

Course Outcomes and COs-POs Mapping

Batch 2023-24

Semester – I

Subject	: Applied Physics for CV Stream	Subject Code: BPHYC102
	Course Outcomes	
CO1	Elucidate the concepts in oscillations, waves, elasticit	y and material failures
CO2	Summarize concepts of acoustics in buildings and ex photometry	plain the concepts in radiation and
CO3	Discuss the principles photonic devices and the engineering	eir application relevant to civil
CO4	Describe the various natural hazards and safety precau	itions
CO5	Practice working in groups to conduct experiments i honest measurements	n physics and perform precise and

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI I	NSTIT	UTE (OF EN	GINE	ERING	AND 7	FECHN	OLOGY	7			
FACULTY	NAM	E	Dr SAD	ASHIV	AIAH	APJ	/ DEF	RA PUSI	HPAL	ATHA I	I				
BRAN	СН		CIVIL			А	CĄDI	EMIC Y	EAR		2023	-24			
COURSE	B.I	E	SEM	ESTEI	2	I	S	ECTIO	N		C				
SUBJECT	APP	LIED	PHYSI	CS FO	R CV	STREA	M	SUBJE	ст сс	DDE	BPHY	C102			
CO & PO MAPPING															
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 I														
C01	3	2			1	·						2			
CO2	3	2										2			
CO3	3	2										2			
CO4	3	3				1						2			
CO5	3	2	1		2			3	3			2			
AVERAGE	3	2.2	1		1.5			3	3			2			
			OVERA		APPIN	G OF	SUBJ	ECT				2.24			

CO AND PO ATTAINMENT

COAND	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	57.63	1.73	1.15		0.58								1.15
CO2	61.97	1.86	1.24										1.24
CO3	61.67	1.85	1.23										1.23
CO4	70.24	2.11	2.11										1.40
CO5	79.33	2.38	1.59	0.79		1.59			2.38	2.38			1.59
AVERAGE	66.17	1.98	1.46	0.79	0.58	1.59			1.98	1.98			1.32
	00117			<u></u>				FIN	AL AT	TAIN	MENT]	LEVEL	1.46

FACULTY

SHP

HOD H.O.D Dept. of Physics S.I.E.T., TUMKUR -6.

PRENCIPIAL SILL TUMKUP Limpoth

SEM: I	Te	otal Stre	ength	6		1	Co	urse:	A	Appli	ed Phy	sics for (Civil Stream		BPHYC1	02	6.05 E. ().	and the second				2022-2023									
SEC: C	1	IA TEST	F 1		IA TE	ST 2			IA	TES	тз		PRACTICAL COMPONENT (25)		SSIGNEM	ENT (10M)			SEE MA	RKS(50)		1. 21	Total Co	os ATTAIP	NMENT			% of	Individual	со	
USN	COI	COI	TOTAL	. CO1	· CO2	TOT	L CO		02 C	03	CO4	TOTAL	CO5	COI	CO2	CO3	CO4	COL	CO2	CO3	100	CO1=95	C02-55	CO1-15	CO1-35	CO5-25	601	602	C03	CO1	COL
1SV23CV001	20	20	40	19	20	39	20			20	20	60	21	2.5	25	25	25					80.5	20.5	205-53	204-33	003-23	COI	02	COS	104	105
15V23CV002	18	17	35	19	20	39	111	10 13	19	18	13	50	15	2.5	2.5	2.5	2.5		0	0		69.5	30.5	30.5	30.5	21	94.210526	55.45455	87.14286	87.14286	84
15V23CV003	13	14	27	17	20	22	20				10	50	13	2.3	2.5	2.5	2.5	1.5	7.5	7.5	7.5	64	49	28	23	15	67.368421	89.09091	80	65.71429	60
151/2301/004		14		12	20	32	20	-		11	16	47	23	2.5	2.5	2.5	2.5	5.25	5.25	5.25	5.25	66.75	27.75	18.75	23.75	23	70.263158	50,45455	53.57143	67.85714	97
1372307004	3	2	5	5	15	20	1. A. A. A.		10	6	12	28	18	2.5	2.5	2.5	2.5	7	7	7	7	195	34 5	15.5	21 5	1 19	20 526216	62 72727	44 39571	61 47957	7
15V23CV005	17	12	29	13	20	33	1		20	7	20	47	25	2.5	25	25	25	7 75	7.75	7.75	7.75	E1 75	40.75	10.3	20.35	10	20.320310	02.72727	44.203/1	01.42037	
15V23CV006	7	0	7	9	6	15	1/			12	12	20			2.0	4.5	2.5	1.23	1.23	1.25	1.23	51.75	49.75	16.75	29.75	25	54.4/3684	90.45455	47.85714	. 85	100
				-	-	1 13		· -	-	15	12	39	1/	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	37	13	20	19	17	38.947368	23.63636	57.14286	54.28571	68
		1		1	1	-	_	1			and the	A BAR SHALLS		Sel State She	11. 15 21	S. C. C. S.	4	10 m		11111				all and the second		1.000	57,63158	61,9697	61.6667	70.2381	79.333

FACULTY

SIR HOD

H.O.D Dept. of Physics S.I.E.T., TUMKUB -6.

PRINCIPAL PRINCIPAL SIET. TUMKUR astas

SIRA ROAD, TUMKUR- 572 106.

Department of Physics

Course Outcomes and COs-POs Mapping

Batch 2023-24

Semester – I

Subjec	t: Applied Physics for ME Stream	Subject Code: BPHYM102										
	Course Outcomes											
C01	CO1 Elucidate the concepts in oscillations, waves, elasticity and material failures											
CO2	CO2 Discuss the fundamentals of Thermoelectric materials and their application											
CO3	Summarize the low temperature phenomena and gene	ration of low temperature										
CO4	Explain the various material characterization technique	les										
COS	Practice working in groups to conduct experiments i	n physics and perform precise and										
000	honest measurements.											

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI	INSTIT	TUTE	OF EN	GIN	EERING	AND	TECHN	OLOG	Y			
FACULTY	NAM	E	Dr SAD	ASHIV	AIAH	APJ	/ DEI	RA PUSI	HPAL	ATHA	H				
BRAN	СН		MECHA	ANICA	L	I	ACAI	DEMIC Y	YEAR		2023	-24			
COURSE	B.I	E	SEM	ESTEI	R	I		SECTIO	N		D				
SUBJECT	APP	LIED	PHYSI	CS FO	R ME	STRE	AM	SUBJE	CT CC	DDE	BPHY	M102			
CO & PO M	20 & PO MAPPING														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11														
C01	3	2			2							2			
CO2	3	2										2			
CO3	3	2										2			
CO4	3	2										2			
CO5	3	2	1		2			3	3			2			
AVERAGE	3	2	1		2			3	3			2			
	1.12.13.1		OVERA	LL M	APPIN	GOF	SUBJ	ЕСТ				2.28			

CO AND PO ATTAINMENT

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	43.65	1.31	0.87			0.87							0.87
CO2	26.30	0.79	0.53										0.53
CO3	53.98	1.62	1.80										1.80
CO4	56.43	1.69	1.13										1.13
CO5	81.14	2.43	1.62	0.81		1.62			2.43	2.43			1.62
AVERAGE	52.30	1.57	1.19	0.81		1.24			2.43	2.43			1.19
								FINA	AL AT	TAINM	1ENT L	EVEL	1.55

AP FACULTY

en HOD H.O.D Dept. of Physics S.I.E.T., TUMKUR -6.

PRENCIPALAL SIL I. TUMKUR

SEM: I	T	Total Strength		7			Cour	se:App	plied Phy	vsics for M	lechanical	Stream		BPHYM	02			1. 1.	No.		2023-2024	4					12.00			
SEC: D	IA TEST I			IA TEST 2			IA TEST 3					PRACTICAL COMPONENT (25)	ASSIGNEMENT (10M)				SEE MARKS(50)				Total Cos ATTAINMENT					% of Individual CO				
ISN	COL	Icor	TOTAL	COL	1002	TOTAL	COL	CO2	CO3 0	CO4	TOTAL	CO5	COI	CO2	CO3	CO4	COI	CO2	CO3	CO4	CO1=95	CO2=55	CO3=35	CO4=35	CO5=25	CO1	CO2	CO3 ·	CO4	CO5
SV22ME001	100		10140	100.	5		12		11	14	1 37	27	2.5	2.5	2.5	2.5	4.5	4.5	4.5	4.5	30	12	18	21	27	31.578947	21.81818.	51.42857	60	108
SV23ME001	-	4	6 10				17		8	1	1 39	20	2.5	2.5	2.5	2.5	6	6	6	6	48.5	12.5	16.5	22.5	20	51.052632	22.72727	47.14286	64.28571	80
LSV23IVIEUU2	1.	4	5 15	-	10	20	10		20	21	56	22	25	25	25	2.5	4.5	4.5	4.5	4.5	60	25	27	27	22	63.157895	45.45455	77.14286	77.14286	88
LSV23ME003	10		0 20	1	10	23	1. 10	-	20	20	7 19	17	2.5	2.5	25	2.5	2.75	2.75	2 75	2.75	42.25	20.25	8.25	12.25	17	44.473684	36.81818	23.57143	35	68
LSV23ME004	1	8 1	5 23		15	21		-	3	1	20	19	2.5	2.5	2.5	25	45	45	45	4.5	40	9	13	23	18	42.105263	16.36364	37.14286	65.71429	72
SV23ME005	10	0 1	2 22	-	3 2	-		-	0	1	30	10	2.5	2.5	2.5	2.5	0.75	0.75	0.75	0.75	32.25	3.25	20.25	3.25	15	33.947368	5.909091	57.85714	9.285714	60
1SV23ME006	1	3	9 22	-	-	A	- '	-	1/		24	15	2.5	2.3	2.5	2.5	0.75	6.75	6.75	6.75	27.25	10.25	20.25	20.25	22	20 210526	25	83 57143	83 57143	92
LSV23ME007	10	6 1	2 28	1	0 6		5		4 20	20	44	23	2.5	2.5	2.5	2.5	6.75	6.75	6.75	6.75	37.25	19.25	29.25	29.23	23	43.646617	26.2987	53.97959	56.42857	81.14286

.

FACULTY

SIR

PRINCIPARINCIPAL SILE I. TUMKUR. minpath

•

•."

HOD H.O.D Dept. of Physics S.I.E.T., TUMKUR -6.