COs & POs

2018-19

ODD SEMESTER

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUBJECT

ELECTRIC CIRCUIT ANALYSIS

SUBJECT CODE

17EE32

COURSE OUTCOME

- CO1. Understand the basic concepts, basic laws and methods of analysis of DC and AC networks and reduce the complexity of network using source shifting, source transformation and network reduction using transformations
- CO2. Solve complex electric circuits using network theorems
- CO3. Discuss resonance in series and parallel circuits and also the importance of initial conditions and their evaluation
- CO4. Synthesize typical waveforms using Laplace transformation

CO5. Solve unbalanced three phase systems and also evaluate the performance of two port networks

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

PRINCIPAL SIET_TUMAKURU

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF E	NGIN	EERIN	G & T	ECHNO	DLOGY	*
FACULTY	NAM	IE I	Mr. G.	H. RAV	VIKUN	AR				-		
BRAN	СН		I	EEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	В.	E	SEM	ESTE	R	ш	5	SECTIO	N		EEE	-12 ⁸
SUBJECT	E	LECT	RIC CI	RCUI	T ANA	LYSIS	s	SUBJE	ст со	DDE	17EI	E32
CO & PO M	APPE	NG					Q.					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
. CO1	2	3						- Hereit				1
CO2	2	3										1
C03	2	3					22					1.
CO4	2	3										1
CO5	- 2	3		64	102			(and			12.2	1
AVERÁGE	2	3									Ser al	1
An and a l	I BE			12		OVI	RAL	L MAP	PING	OF SUE	BJECT	2

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11,	PO12
COI	46.00	0.92	1.38									12.5	.460
CO2	41.55	0.831	1.246										0.415
CO3	49.25	0.985	1.477			1		ST.				1000	0.492
CO4 ·	46.82	0.936	1.404							1.			0.468
CO5	45	0.9	1.35	No.			1207						0.45
AVERAGE		0.914	1.371			-		10-11-1	-				0.457
								FIN	AL AT	TAINN	MENT L	EVEL	0.914

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET, TUMARORO

	SEE Tot	5006	13	11	*	4	2	26	24	12			21	32			5	6			100	11.71	19.51	
		C05	36.55	42.07	48.28	37.24	28.97	69.66	71.72	46.21	40.00	35,17	55.86	56.55	38.62	35.27	E6'4E	37.34	47.59			44.99	Γ	Í
	8	CO4	40	45.6	48.3	40.7	29	73.1	21.25	46.25	40.00	45.52	55,86	56.55	45.52	35.17	31.03	44.14	44.14			46.82		Í
	% of individual CO	C03	36.55	48.47	51.72	40.69	35.86	76.55	64.83	49.66	40.00	45.52	55.86	70.34	42.07 4	45.52 3	41.38 3	44.34 4	47.58 4			49,25 4		Ì
	No.F	C01	35.45	39.09	47.73	38.18	22.36	68.64	81.36	42.82	40.00	36,82	50.45	37.27	39,05	25,45	25.00	16.21	42.73			41.55		ĺ
		01	36.35	42.07	10.30	37.24	76.92	69.66	71.72	46.21	56.55	18.62	59.31	60,09	45.52	35.17	37.93	40.69	65.09	1		46.00		Ì
		009-29	10.6		34	10.8	5.4	20.2		13.4	11.6			38.4	11.2		11	10.8	13.8					İ
	1ENT	CO4-29 (11.6	14.2	34	11.8	8.4	21.2	21.4	11.4	11.6	13.2	16.2	18.4	13.2			12.0	12.8					
	TTAINS	CO3-29 C		34.2	15	1.8	10.4	-	-	4.4	11.6		6.2	0.4	22	3.2	12	12.8	13.8					
174432	'0161 COS ATTAINMENT	CO2+44 CC	-	17.2	22	16.8			35.0	-	17.6 - 1		22.2	26.4 2	17.2		-	15.8	18.8	-		-		
de .	-	-		-					-	-	-				-					-		-		
Subject Code	_	05 COI-29	6 10.6	2.2 12.2	14	8 10.8	_	1 20.2	-	4 13.4	6 10.6	2. 21.7	2 27.2	4 37.4	2 13.2	2 20.2	11		8 13.	_	_			
Ø.	-	34 COS	2.6 2.	2.2 2.	1 1	8 0.8	4 0.4	2 5.1	8.4.8	4 2.4	6 1.6	2 1 2 2	2 4.2	4 6.4	2 12		1		8 18	-	-	-	-	
LN N	RKS(6)	C03 C04	2.6 2	22 22	-	0	4	5.2 5.2	4	4 2.4	1.6 1.6	2 2.2	4.2 4.2	5.4 5.4	12 12	12 13	1 1	1.0 1.6	1.8 1.8	-	-		-	
T.ANA	SEE MARKS(60)	COT C	2.6 2	2.2 2.2	1	0.8 0	0.4 0	5.2 5	4.8 4	24 2	1.6 1	1.2.1	4.2 4	6.4 8.	12 1	12 1	1	1.8.1	18 1	-	-	-	-	
IRCUT	ŝ	0 100	2.6 2	22 2		0.8 0	-	5.2 5	-	2.4 2	1.6 1	1.2 1	4.2 4	6.4 6	1.2 1	-	1	1.8.1	1.8 1	-	-	-	-	
ECTRIC CIRCUIT ANALY	M0	CO5 0		2 2	2	2 0	2		2	2 2	2	2 1	2 4	2 6	2 2	2 2	2	2	2 1			-	-	
	017210	C04	~	2	~	2	~	2	~	~	2	*	~	2	2	2	2	~	2					
Subject	IGNEMENT / QUIZ(10 M)	CO3	~	2	**	2	~	2	~		2	*	2	~	2	2	2	~	2	-	t		F	
	IGNEM	C01	2	2	~	2	-	2	2	2	2	2	2	2	2	2	2	2	2					
11	ASS	001	2	2	2	2		2	~	2	2	5	2	~	2	2	2	N	2					
creth	(MOC)	COS TOTAL	13	17	22	17	12	27	29	18	16	11	20	16	18	14	34	36	19					
Total strength	IA TEST JOIN	-		80	11	-		11	14			1	30		10	4	-00	6	10					
I	VI IV	100 D	~	-	11			14	15	ę6	-	10	9		10	7			m					
	IA TEST 2(30M)	CO3 FOTAL	11	15	02	15	9	22	22	316	14	15	18	24	16	12	12.	14	17					
SEM III	TEST		9	-	-	-	-	13	11	10		10		a		3	_	e	-					
S.F.A		AL CO1	~	-0-	*	9	~	10	15	*	4	2	80	~	4	~		en.	1					
	1(30M)	C TOTAL	11	_	21	16	=	-	2	-	15	16	61	15	17	13	13	15	18					
2018-19	IA TEST (JOM)	COI 002	6 6	-	11 10	8 8	9	13 13	14 14	8	7 8		11 8		10 7	-	8 5	8 7		-	-	-	-	
-	-	÷		-		-			-		-									-	-	-	-	
Academic year	SEMERT	USN	15V156E029	15V1568081	1003361/051	15V17EE002	15V17EE003	15V1716004	15V17EE005	15V17EE006	15V17EE007	15V1715008	15V17EE009	15V176E010	15V17EE011	15V18EE400	109338TAST	15V18EE402	15V138EE403					

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

Inn PRINCIPAL SIET. TUMAKURU

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF EEE

SUBJECT TRANSFORMER & GENERATOR

SUBJECT CODE

17EE33

2018-15

COURSE OUTCOME

CO1. Understand the construction and operation of 1-phase, 3-Phase transformers and Autotransformer.

CO2. Analyze the performance of transformers by polarity test, Sumpner's Test, phase conversion, 3-phase connection, and parallel operation.

CO3. Understand the construction and working of AC and DC Generators.

CO4. Analyze the performance of the AC Generators on infinite bus and parallel operation.

CO5. Determine the regulation of AC Generator by Slip test, EMF, MMF, and ZPF Methods

PROGRAM OUTCOMES

- POI Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology

PRINCIPAL: SIET. TUMAKURU

COLLEGE		SHRI	DEVI	INSTI	TUTE	OF E	GIN	EERIN	G & T	ECHNO	DLOGY	1
FACULTY	NAM	E I	MRS. S	SHWE	THA 7	ΓМ						10
BRAN	СН		I	EEE		· A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.1	E	SEM	ESTEI	RI	m	5	SECTIO	N			
SUBJECT	TR	ANSF	ORMI	CR & 0	ENE	RATO	R	SUBJE	ст со	DDE	· 17E	33
CO & PO M	APPIN	١G										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2		1.	2	1000			2	1
CO2	2	3	3	2			2				. 2	1
CO3	1	3	3	1	-	-	2	1			2	1
CO4	2	3	3	2			2				2	1
CO5	2	3	3	.2			2				2	1
AVERAGE	2	3	3	1.8			2				2	1
TIME	and				25	OVE	RAL	L MAP	PING	OF SUI	BJECT	2.11

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12
CO1	45.1	1.353	1.353	1.353	0.902	111	-	0.902		の		0.902	0.451
CO2	44.7	0.894	1.341	1.341	0.894			0.894				0.894	0.447
C03	46.9	0.469	1.407	1.407	0.469		-2	0.938				0.938	0.469
C04	46.1	.0.922	1.383	1.383	0.922			0.922			1.4	0.922	0.461
CO5	44.9	0.898	1.347	1.347	0.898		-	0.898		-		0.898	0.449
AVERAGE	45.54	0.9072	1.3662	1.3662	0.817			0.9108				0.9108	0.4554
	12 april	1999			Contraction of the second			FIN	ALAT	TAIN	MENTI	LEVEL	.9619

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572198.

SILE- UMARURU.

Annual	Table invitients	Walk.	1143ml[403	10+1812-00	LTWINE ACT	The supervised in the second	V10101 Lett	TAME IN DOUG	1341313000	DOD IN 11/01	CODINE VALLE	TWO NOT WITH THE PARTY NOT	PERIOD NO. 1/10/201	COCH M 1/411	DOGRAM THEIR	S201M Test	THE PARTY OF	1101269038	UN4	Contract of the local division of the local
								-									t	t	103	
1006	H	E	-	-	+	×		-			-	*	10		-	-	-	-	1	
5		Ŧ		=		N	~		5			10	=						Ľ	
7176																L	L	L	No.01	10000
-		Ē	-	1	-	2	2	3	*	Ĩ	1		1	-0	Ĩ	ľ	ľ		00	
-	×	3	=		4	×	-	*	ā,	-	4	1	ž	2	-	-	h	h	Q.	ļ
11.1	4	i			10	10			1	=	=	1	1	5			ļ.	Ļ		l
10.1	l		L					_								L		Ļ	WLDL	i
	Î	Ĩ	Ē	Ĩ	Ĩ	Ē	Ĩ	1	Ĩ	Ĩ	ĥ	ſ	ſ	Ĩ	ſ	Γ	ſ	ľ	0.04	Ì
1001	E.	141	ł	5	-	-		+	1	-	X	101	ii.	-	-	i	Ē	f	000	
NCB1	×	ž	¥		4	n	+	2	s		1	5	13	*	4		3	-		
	ļ	i	Ļ	Ļ					ur.		3		17	1	-			11	TOTAL	
				÷						_	-	-				i,	4	4	1001	ĺ
-	×	26														3			1001	
-	z	-		-	1	-		-		-				Ĩ	Ē		ſ	ſ	103	ł
	÷		~	~	~	-	**	*	*	~	-		-	~	-	-	-	-		
1				-	-		-	-	-	_			~	~	~	5	-		6	ľ
**	-																		8	ł
-	=	-		Ĩ				3			-								WADL.	Į
×	4	140	8	8	10	8	H	1	E	Ħ	H.	1	đ.	8	10	×.	H.	10		ļ
CNC1	l	4		ļ								-	- 40	2				-	101	İ
	ľ	Ĩ	ľ	1	Ē	Î	-	7	Ĩ	-	Ĩ	Î	Ē	Ĩ	Ē	Ī	Ĩ	Ē	103	t
0.0610	ł	11.	ċ	=	ĉ	*	***			ł.	2	1	2	ž	4.6	2	•	×.	KD4	
N THE R	1	11.4	ĉ	1.0	ż		z,	-		÷	c	2	ĉ	2	4	2		1		
1.44.1	×	100	+1	1	t		£			£	÷	5		1	4.6	÷		1	1004 009	
KLAND?	-	24			2		÷			ċ		5	42	2		-		1		ĺ
12.1125														Ì		j			TOTAL .	ł
	×	1	2	iii	24	8	11	7	2	Ē		4	1	1	8		10	-	(co)	ł
VIII V	÷	2	171	11.4	2	8	ti Li	-		E.I.	121	11.1	CLU.	15.4	14.80	111	10	\$	000	ļ
-					=	L	111	2		E	8	199	141	Ē	1.61	ž	14	11.		ĺ
NULTER D		Land	Z	1	1														80	
SL NULL	14	WE PHH	154 17				1			1	2	5	÷	2	ź	×	-	E		ļ
steerst laterst	14 14	2014	1/1	14.8	13.7	14	1945	10.00	11	14.61	LD.	101	Let.	12.4	14.4		10		NO.	
steerst laterst	14 14 14	Ľ	1/1	14.8		19		10.00	141 111	141 141	EN 10		LTK. FOR.	124 244						
JULCE N.M. JULKER JULKER	14 14 14	FWL FVL	Pur. 1/41	14.8	12.96 1/21	14 44		10 10 10 10 10 10 10 10 10 10 10 10 10 1	241 241 241	1 International	F.G. CW. F.D.	9.80	l			100		+01	ton on	
W UCCL K MC STMC1 ISTC	N N N N	FWL FVL	Pur. 1/41	14.8 24.8	12.96 1/21	N N 21	141 141	- 18	(a) [a) [b] [b] [a]	1 International		9.80	19.2		141 JAH	tet: [COC	14	10+ 12+	ton con con	
Addit the Juli 18'NE Julies 10'NE 12'NE'S	14 14 14 14 14	a Will Pres Pres Public	Pur. 1/41	I AM WHI WHE WHE	1746 JTE 1746 1741	1/1W NI NI L1	W19 111 111	100	1 1 (av. (a) (w) (a)	IN IN IN	XV8 11.01	11.14 11.11 11.11	19.2 82.4	15.4 ALL	「日本」「日本」書記	Tell (Tell (COL)	1744 MI 141	104 H 401	ton on	
10.1120 [5.0026] 24.9 [10.210] 40.110099 44.140944	14 14 14 14 14 14	FWL FVL	Pur. 1/41	UAR RWI WWC WWC	7.81 [7.96 [7.61	1/18 NI NI AT AT	141 141	100	1116 1.0 JU 101 101	NU DA	101	11.14 11.11 11.11	19.2	15.4 ALL	124 134 ADD 429	and the level that goals	174 JUN 40 40	[114]114 411 401	ton on lon	
10.1121 [5.0026] 24.0 [10.210] 40.11020 44.04040 44.04040	N N N N N N	a With Pres Pres Public	144 206 FM FM FM	A'Ve (1/A A'VI B'VC B'VE	1746 JTE 1746 1741	1/4 1/4 Mt Mt /4	W19 111 111	1000 111A 001	1-16. [1116] [1,17. [4] [40] [41]	NU DA	XV8 11.01	11.14 11.11 11.11	19.2 82.4	15.4 ALL	124 134 ADD 429	and the level that goals	1744 MI 141	[114]114 411 401	title cun title cun sub	
10.1120 [5.0026] 24.9 [10.210] 40.110099 44.140944	N N N N N N N	a With Pres Pres Public	144 200 FM FM FM	A'Ve (1/A A'VI B'VC B'VC	1011 0.01 1.00 1.00 1.01 1.01 1.01	0.001 T48 T48 N1 N2 61 61	18.0 18.10 18.10 18.00 18.00 18.00	1000 111A 001	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	XV8 11.01	11.14 11.11 11.11	19.2 (4.14) (4.14)	15.4 45.2 48.2	124 134 ADD 429	and the level that goals	174 JUN 40 40	[114]114 411 401	ton on lon	

TWEE i.

1016-1019

G. U. Roment Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

Nam PRINCIPAL SIET, TUMAKURU

- Contraction of the

	6	2	
	12	9	
10	101	in the second	
3	204	LIEVI	

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF EEE

2018-19

SUBJECT ANALOG ELECTRONIC CIRCUIT

SUBJECT CODE

17EE34

COURSE OUTCOME

CO1. Obtain the output characteristics of clipper and clamper circuits.

CO2. Design and compare biasing circuits for transistor amplifiers & explain the transistor switching.

CO3. Explain the concept of feedback, its types and design of feedback circuits

CO4. Design and analyze the power amplifier circuits and oscillators for different frequencies.

CO5 Design and analysis of FET and MOSFET amplifiers

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G. II K on Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET., TUMAKURU

COLLEGE	-	SHRI	DEVI	INSTI	TUTE	OFE	IGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	E	MRS. S	HWE	ГНА	ГМ				10		
BRAN	СН		I	EEE		A	CAD	EMIC Y	EAR		2018-2	2019
COURSE	B.	E	SEM	ESTE	R	m	5	SECTIO	N			
SUBJECT	AN	ALOG	ELEC	TRO	NIC C	IRCUI	т	SUBJE	стс	DDE	17EE	34
CO & PO M	APPIN	śG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2 .	3	2	2		1	1		104			1
CO2	3	3	2	2		1	1					1
CO3	3	3	2	2		1	1					1
CO4	2	3	2	2		1	1					1
C05	2	3	2	2		1	1					1
AVERAGE	2.4	3	2	2		1	1					1
						OVI	RAL	L MAP	PING	OF SUI	BJECT	1.77

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12
CGI	47.24	0.94	1.42	0.94	0.94		0.47	0.47				1	0.47
CO2	47.61	1.43	1.43	0.95	0.95		0.48	0.48					0.48
CO3	50.00	1.50	1.50	1.00	1.00		0.50	0.50					0.50
CO4	46.41	0.93	1.39	0.93	0.93		0.46	0.46					0.46
CO5	47.06	0.94	1.41	0.94	0.94		0.47	0.47					- 0.47
AVERAGE	47.66	1.149	1.430	0.953	0.953		0.477	0.477					0.477
The Ste	1-1	HE.	1		9 14	2.2.0		FIN/	AL AT	TAINN	MENT L	EVEL	0.845

G-D Romering Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET., TUMAKURU.

and a strange	Married Intell	110 Million	Textmonet	The date in the	Time Bill (1911	UNITED NO	TION & DATE	TACIN TOTAL	DOM NUME	TWO IN THE	LOOKAL DAT	NAME OF COLOR	1041741964	1001101000	1001 N 1001	CONMENT	100000-01	ADDRESS	- Mar	ATTEN AVEC
1.00	Į	Į	Ļ			Į					l	Į							and a	
	Г	Ĭ		Γ									11						101	14,7001.3
	ŀ	E			ľ	10	ľ				Ĺ		1			Ī	Ē	Ī	Notes.	
1	ľ	10		1	1	ľ			Ĩ		Ľ					[ĺ		100	
	ľ	Mr. N	ľ		ľ	ľ					Ī					Ī	Ĩ		100	14 1957
	ľ	187		Г	Г	ľ				ľ	ĺ								Intal	
	Г	141	Ē	f	ľ	ľ	Ť									Ĩ	Ĩ		1	
			-	Ē	ľ	ľ	-		-							ľ	-	-	111	11111
		141				ľ	-	-	5	1	ľ	-	Ĩ		-	ľ	ľ	-	tona	
l	[10			Ē	4	1	10	10	-	1	1	10	18 2	14 2	ľ.	18 2	1.	iii ii	
00	ľ	E			t	t	L			L									Ē	
1.01	ř	-		ŀ	Ľ				ł	ŀ									101	
198	=	2																	NO.	a wat live
1001	÷	2		F	ſ	1		-					-		Ĩ				100	
1001	-	2		F	Ē	ľ	-	-			-	-		2	-		1	**	110	
10.00	×	ā	8	1	ľ	N	8	10		-	H	4	10		10		4	H.	10	
101.0	Ļ		2	-		1	42		:	-	r	z	12.2	4.2	4.2	11	1	1		
10.5	=		5	-	-	-				ć	E	z	18.2	4.7	47	1		24	H 004	
101	Ļ		-		-					5	5	5	t II	42	4.17	17	-	14	10	310-412
2	L										-		11						99	1014-1017
																			104	
	ľ				Ľ				11		E	2	2.91	-	ĉ	1	14	1.4	1014	
148.1	*	10	=		1	5	2	5		-	=		2	15	11	*		=	101	-
THIN .	-	127	121	E	2	ž	E	11.1	13.4	14.2	E	1.01	111	243	122	11.2	11.4	11.4	1001	
14.000	×	11H	TTAK.	E	10	ii i	11	14.6	No.	111	E.	14.1	12	19.2	11.2	11	ii.	11.0	401	
0.801	k	12	H.	2	No.	10	11.61	14.6	100	1	Ξ	141		121	14.1	E	11	11.4	100	1014
12.00	¥	2	ž	Ę	1	11.0	115	No.	X	121	191	H	114	CR.	162	191	1.11	114		
14.00	+	and .	110	Ŀ	141	11.6	1.81	18.4	18.4	12	123	111	102	16.2	18.2	14	111	11.4	109	
17.74	15	a Wu	111	-	1	11.1	11.4	110	-	11.1	10	111	6.10	10.0	K.H.	1.44	11.1	1.16	100	
	1	1111	-	114	10.0	1.16	44.7	14.7	100	A IN	4/1	1.16	0.00	44.1	11.1	41.0	1.84	116	100	
20.02						111						111							UR4	Annual
	-														110	0.0		-	14	
-						2		-	-	-	6	-	3		1		-		1	

TALE OF STREET

G, H R Mead of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

5th

PRINCIPAL SIET. TUMAKURU

DEPARTMENT OF EEE

SUBJECT DIGITAL SYSTEM DESIGN SUBJECT CODE
--

17EE35

COURSE OUTCOME

CO1	Develop simplified switching equation using Karnaugh Maps and Quine McClusky techn	iques.
CO2	Design Multiplexer, Encoder, Decoder, Adder, Subtractors and Comparator as digital combinational control circuits.	
CO3	Design flip flops, counters, shift registers as sequential control circuits.	94
CO4	Develop Mealy/Moore Models and state diagrams for the given clocked sequential circuits.	
C05	Explain the functioning of Read only and Read/Write Memories, Programmable ROM EPROM and Flash memory	<u>.</u>

PROGRAM OUTCOME

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G. H Round Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572108.

PRINCIPAL TUMAKURU

COLLEGE	1	SHRI	DEVI	INSTI	TUTE	OF E	GIN	EERIN	G & T	ECHNO	DLOGY	ŝ
FACULTY	NAM	E !	MR. M	ADHU	B. C					÷	4	1
BRAN	СН		I	EE		А	CADI	EMIC Y	EAR		2018-3	2019
COURSE	B.I	E	SEM	ESTE	R	VI	· s	ECTIO	N .			
SUBJECT	1	DIGIT	TAL ST	YSTEN	1 DES	IGN		SUBJE	ст со	DDE	1768	35
CO & PO M	APPIN	G										
and Suda a	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			11	-	•		•			3
CO2	2	3	3		•		-		•	•		2
CO3	2	2	3		1	10.		6174	•			2 .
CO4	2	2	•		-	-	•	-		-		2
CO5		-	3			-						2
AVERAGE	2.25	2.5	3		-							2.2
	-	A CONTRACTOR			1	OVI	ERAL	L MAP	PING	OFSU	BJECT	2.48

suggestion of the local division of the loca	party of the local division of the local div	Statement and a state of	A REAL PROPERTY AND INCOME.	the second second second second second second second second second second second second second second second se	_								
	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	36.47	1.09	1.09			-	- 14		12.0		-	1-22-11	1.09
CO2	35.56	0.711	1.06	1.06	-	-	-						0.711
CO3	36.47	0.729	0.729	1.094	-					-			0.729
CO4	36.47	0.729	0.729		-	-	•	-					0.729
· CO5	36.85			1.105		•			-	1.			0.737
AVERAGE		0,814	0,902	1.086	-			-			•		0.799
				and the second		1.10	194	FIN	AL AT	TAIN	MENT I	EVEL	• 0.9

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET. TUMAKURU

Conference and a		61-810C		MUN				Foral strength	14	88	_	1.20	Ampleix	340	INCITAL SYS	SYSTEM BENES	CN 1	L	Subject Code	1	10.8381	1	_			-	-	a
STM LAT LAT	_	IN TEST ISJOH	19400		A TEST 11301	log	1	A TEST MONE	1948		ASSIGNED	MENT / Q	114 01175 3C			198	SEE MARKSON	100			Tunal Con	trad 5 on ATTAINMENT	10.01			N.M.In	Wed individual CO	11
NSI	100	(0)	TOTAL	003	(0)	DOI:N.	103	603	TOTAL	103	001	603	10.3	603	01+103	103	60.3	604	100	42~10.3	002-44	(0)-29 ()	1.004-24	009-29	103	6.02	000 0	8
1003385AST	4.8	8.8	4.6	11	4.8	3.6	4.8	4.8	9.6	2	1	2	2		1					11.0	14.6	1.0	8.8		11 1111 111	10 28581 01	11.7911 11.7011	сяř
1000001/051		- 6	- 12			12			12	2	2	**	1	-	1.2	12	1.1	1.7	1.1	5.0	16.2	4.7	42	11. 2.8	77414	14 Selvers 11	31,72434 31,72434	21
200139134141	5.5	1.1	11	23	-11-	11	5.5	4.8	11	2	2	*			22	11	22	22	:22	(9)	141	4.7	4.9	1.1	13 dates 14	14 54545 11	31.44826 33.44628	12
5003951/451	4.4	1.1	10.6	11	- 53	10.6	1.1	-1.1	10.6	- 1	1	2	- 1	4						11.1	18.6	101	11.8	13.1 41	100%	43,37773 45	45.85207 41.86207	2
1001001000	4.6	4.6	6.8	4.6	4.6	2.4	4.5	- 4	1.1	*	2	*	2		1.8	1.8	1.8	1.8	1.8	8.4	11	8.4	8.6	10. 10	8.00012 38	BE SPERCEE	CV090 NE COSMENE	18
1501361007	11	1.8	11.6	1.8	1.8	9.11	3.8	1.1	9.11	2	1	-			4.8	4.8	4.8	4.8	4.8	12.8	18.4	12.6	11.6	12.6 .43	TP. WORPPER	41.81818 41	43,448,28 43,448,29	3
#008981.MS1	4.4	4.3	9.6	4.1	4.1	3.6	43	4.1	1.5	2	1	2	*	-	1.8	.2.8	9.2	2.8	- 2.8	16	11.0	14.	18		DR 1175411 55	10.45455 31	110411 11 110411 11	5
8003961.461	. 8		-	-		at a	1		14	2	1		2	-	4.2	42.	4.2	2	4.2	~ fttt	1.81	# 11	£11.7	11.1.1	ML GOOLVER	#181879E	6/90/0110 (0.90/03/86	5
1303361061	1.1	3.8	0.01	1.1	1.8	11.6	8.8	1.1	11.6	*	*	2	*	1	1.0	.9.6	1.4	1.8	112	13.4	144	11.6	3.81	116 44	1///2018	44.09001 46	# 1985 A 1985	12
11000017	14	- 45	9	54	- 64		10		5.01	*	2	+	- 1	1	2.8	3.8	. 1.1	2.6	12	6.0	100	4.5	10	22 # 01	10900	CC PSRSE LL	comports ceeperits	15
1941963014	4.5	45	1	-45	- 45		45	- 45		4	. 2	*	*	. 1	*	. 10	10	-		18.8	11	65	65	4.5 22	22.41379	12 51	30418-01 96618-006	5
110/10026	4.1	1.6	8.6	11	4.1	1.5	1.1	- 64		1		+	+	1	22	11	11.	22	11	584	0.71	58	5.0	12 54	SE PEOPLER	52 10000 12	28/31034 28 31034	=
1001001001	1.4	4.4	12.4	6.2	1.4	12.4	62	1.8	12.4	1	1	3		1	7.6	9.6	116	3.6	7.6	8.55	11	15.8	15.8	-	SA THE PS	50 54	54,48276 St AB270	E
000301451	1	-	00	-	- 1	-10	1		10	1			1	- 1	112		1.1	1.8	12	12.8	114	12.0	11.0	12.8 4	BP 05011 FE	40.45450 44	44.13783 44.13767	Ξ
00m3000A61	4.4	4.1		14	4.1		43	4.1		1	1	1	1	1	4.2	4.7	1.0	-	-	10.7	2.61	10.7	107	W LOL	WOOR.	WE LINCOLDE	THE SSMERTE	38.7
10#3005401	4.6	4.6	14	4.6	4.0	5.8	4.6	4.0	4.2	1	1		1	. 1	22	11		22	-11		11.0			01 8.8	19961	-	NO.34483 IN JAARS	Ŧ
EVA20004412	- 35	- 11	11	- 63	11	11	1.6	11	=	1	.1		-	1	-		-	-		10.1	Ŧ	10.3	10.5		W NOT W	HE HERE H	14. 6007.9E	1001

G- H R 2 Head of the Dipartment & Electronics Engine of Engineering & Teurson LUMKUR-572105.

PRINCIPAL SIET. TUMAKURU

DEPARTMENT OF EEE

SUI	BJECT	Electrical & Electronic Measurement	SUBJECT CODE	17EE36
_				

COURSE OUTCOME

2018-19

CO1	Measure resistance, inductance and capacitance using bridges and determine earth resistance.
C O2	Explain the working of various meters used for measurement of Power, Energy & understand the adjustments, calibration & errors in energy meters.
CO3	Understand methods of extending the range of instruments & instrument transformers.
CO4	Explain the working of different electronic instruments.
CO5	Explain the working of different display and recording devices.

PROGRAM OUTCOME

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G. U. Q. Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET., TUMAKURU

COLLEGE		SHRI	DEVI	INST	TUTI	OF E	NGIN	EERIN	G & T	ECHNO	DLOGY	-
FACULTY	NAM	E	UMAB	AI								1
BRAN	СН		I	EEE		A	CAD	EMIC Y	EAR		2018-2	2019
COURSE	B.1	E	SEM	ESTE	R	ш	1	SECTIO	N			
SUBJECT	Ele	ctrical	& Ele	etronic	Mea	sureme	nt	SUBJE	ст со	DDE	1766	36
CO & PO M	APPIN	ſG										
	PO1	PO2	PO3	PO4	POS	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	2						1
CO2	3	2	2	2	2	2						1
CO3	3	2	3	2	2	2						1
CO4	3	2	2	2	2	2						1
CO5	3	2	2	2	2	2						2
AVERAGE	3	2	2.2	2	2	2						1.2
					25	OVE	RAL	L MAP	PING	OF SUE	JECT	2.05

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12
COI	48.0	1.44	0.96	0.96	0.96	0.96	0.96			No. of Concession, No. of Conces			0.48
CO2	48.4	1.45	0.96	0.96	0.96	0.96	0.96		1.15			and the second	0.48
CO3	50.8	1.52	1.01	1.52	1.01	1.01	1.01						0.50
CO4	46.9	1.40	0.93	0.93	0.93	0.93	0.93						0.46
C05	47.8	1.43	0.95	0.95	0.95	0.95	0.95	S.A.M.		orde			0.47
AVERAGE	48.38	1.44	0.96	1.06	0.96	0.96	0.96						0.47
	1200	1	200	1				FINA	ALAT	TAINN	IENT L	EVEL	0.974

G. U.G. Anti-Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572108.

Render

PRINCIPAL SIET, TUMAKURU.

Average	Total students	TOTAL	Isv38EE403	INVISEE402	1sv15EE400	19/1701010	19V176E009	1W17EE005	19/17/1004	1sv170002	USN	SEM: V, EEE
11	-	a	11	12	14	-	9	to	14	11	001	
8.75	de	R	7			13	60	19	13	1	C02	IA TEST 1
19,75	8	158	18	16	19	20	17	25	27	12	TOTAL	
10.35	8	83	12	11		1		14	12	10	003	IA
8.75		70	9	~	2	=	ti	16	И	1	604	TEST
19.1		153	21	13	5	18	19	ø	25	11	TOTA	Ĩ
10	m	80	14	12	11	7	9	10	12	s	CO4	
12	-	8	10	7	11	15		20	16		005	N TEST
22		176	24	19	22	22	10	30	28	13	TOTAL	3
2	98	16	2	2	2	2	2	2	2	2	COt	Γ
2		16	N	2	2	2	*	2	2	2	002	
		16	*	2	2	~	N	2	2	2	603	Assi
2	8	15	2	2	2	2	2	2	2	2	CO4	humung
2	œ	16	2	2	2	N	2	2	2	2	005	
10	-	80	10	10	10	10	10	10	10	10	TOTAL	
5.1		40.8	1.1	4.2	4,4	5.8	5	Ŧ	5,6	u	100	
51		41	R'E	4.2	4.4	5.8	5	7	5.6	J.	CO2	
51		41	3.8	4,2	4.4	5.8	\$	7	5.6	u,	003	
5.1	8	40.8	3.8	4.2	4.4	5.8	5	7	5.6	s	004	300
5.1	09	40.8	3.8	4.2	4.4	5.8	5	1	5.6	5	2005	
25.38	-20	203	10	21	22	z	25	35	28	C	TOTAL	
THI	98	144.8	16.8	18.2	20.4	14.8	16	61	21.6	81	001	
15.85		126.8	12.8	10.2	11.4	20.8	15	28	30.6	8	002	
17,475		139.8	17.8	17.2	14.4	14.8	36	23	19.6	17	003	TOTAL
17.1		136.8	19.8	18.2	17.4	14.8	36	19	19.6	12	004	
19.1	-	152.8	15.8	13,2	17.4	22.8	36	219	13.6	15	005	
62.41	8.00	4.99	0.58	69.0	0.70	0.51	0.55	0.66	0.74	0.62	C01	
54.7	8.00	4.37	0.44	0.35	0.39	0.72	0.52	0.97	0.71	0.28	002	
50.3	8.00	4.82	0.61	0.59	0.50	0.51	0.55	0.79	0.68	65.0	005	Average
	_	3.11			-				_	0.27	004	
	-	-		-				1.00	-			

2018-19

E&EM 17EE36

G - H Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

Yn i

PRINCIPAL SIET. TUMAKURU.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF EEE

SUBJECT ENTREPRENEURSHIP(M&E) SUBJECT CODE 15EE51	SUBJECT MANAGEMENT & ENTREPRENEURSHIP(M&E	SUBJECT CODE 15EE51
---	--	---------------------

COURSE OUTCOME

- CO1. Explain the field of management, task of the manager, planning and steps in decision making
- CO2. Discuss the structure of organization, importance of staffing, leadership styles, modes of communication, techniques of coordination and importance of managerial control in business
- CO3. Explain the concepts of entrepreneurship and a businessman's social responsibilities towards different groups
- CO4. Show an understanding of role of SSI's in the development of country and state/central level institutions/agencies supporting business enterprises
- CO5. Discuss the concepts of project management, capital budgeting, project feasibility studies, need for project eport and new control techniques

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL

SIET. TUMAKURU

COLLEGE		SHRI	DEVI	INSTI	TUTE	OFE	NGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	E	MISS.	SUCH	ITRA				1			
BRAN	СН		I	EEE		А	CAD	EMIC Y	EAR		2018	-19
COURSE	B.1	E	SEM	ESTE	R	v .	5	SECTIO	N			
SUBJECT	MAN	AGEME	NT & EN	VTREPR	ENEUI	RSHIP(M	&E)	SUBJE	ст с	DDE	15EF	251
CO & PO M	APPIN	ſG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	•					-	3	2	3		2
CO2	-	•	-	-		2	•	2	3	3	-	2
CO3		•	•	-		3	•	2	3	2		2
CO4	•	•	•	-		•	•	2	2	2	•	3
CO5	-			-	-	-	•	2	3	3	2	2
AVERAGE		-		•	-	2.5	•	2.2	2.6	2.6	2	2.2
Alter 1		1				OVE	RAL	L MAP	PING	OF SUI	BJECT	2.35

	C0%	PO1	PO2	PO3.	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12
CO1	44.4		-	•	•		-	•	1.33	0.89	1.33		0.89
CO2	41.5	•	-	-	•	-	0.83	-	0.83	1.25	1.25	•	0.83
ĊO3	58.5	-			•	-	1.76		1.17	1.76	1.17		1.17
CO4	41.2	1.	•			-	-	•	0.82	0.82	0.82	•	1.24
CO5	21.8		-	-	+	-	•	-	0.44	0.65	0.65	0.44	0.44
AVERAGE			•	•	•		1.71	•	0.92	1.07	1.04	0.44	0.91
		391						FIN	AL AT	TAINM	MENT I	EVEL	1.02

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET., TUMAKURU

Academic year	30	8-19		MISE	20	. S.		STUB	ENTS-13		Contraction of the	54	hject			M&E	1 h		Subj	et Code	158	8298		100						
SEM:IV	IA.	TEST II	(534)	64	TEST 20	580	14	TEST N	1990	1.1	ASSIGNE	MENT /	Q1.1215 W	0		583	MARK	SUNIT		1.1.1	Total Co	ATTA	NMENT	Copile		36.00	Individue	001		SEE Tot
USN	C01	002	TOTAL	C02	6.05	TOTAL	C04	C05	TOTAL	cor	C02	cas	cor	C05	C01	C02	cos	C04	C05	4.5	202-3	4.5	45	43 COR-3	605	603	C03	C04	C05	8034
15V14EE001	5	5	10	6	4	10	6	4	10	1	1	1	1	1	8.8	8.8	8.8	8.8	8.8	15	21	10	15	20	60.4	65.0	40.0	60.4	80.8	44
15V14EE004	6	6	12	7	5	12	6	6	12	1	1	1	1	1	7,4	7.4	7.4	7.4	7.4	14	13	8	14	21	53.3	49.E	70.0	53.3	24.6	37
15V14EE010	6	3	9	5	4	9	4	5	5	1	1	1	1	1	10.2	10.2	10.2	10.2	10.2	17	15	11	14	21	63.7	56.3	93.3	52.6	24.4	51
15V15EE001	6	4	10	6	4	10	5	5	10	1	1	1	1	1	6.2	6.2	6.2	6.2	6.2	13	11	7	11	18	48.9	41.5	60.0	41.5	20.9	31
15V15EE004	6	5	12	7	5	12	5	7	12	1	1	1	1	1	8.2	8.2	8.2	8.2	8.2	15	34	9	15	23	56.3	52.6	76.7	56.3	26.7	41
15V15EE010	4	5	9	5	4	9	5	4	9	1	1	1	1	1	8.6	8.6	8.6	8.6	8.6	14	14	10	15	19	50.4	50.4	80.0	54.1	21.4	43
15V15EE011	4	5	9	4	5	9	5	4	9	1	1	1	1	1	7.2	7.2	7.2	7.2	7.2	12	13	8	13	16	45.2	48.9	68.3	48.9	18.6	36
15V15EE014	6	- 4	10	6	4	10	5	5	10	1	1	1	1	1	6.4	6.4	6.4	6.4	6,4	13	11	7	11	18	49.6	42.2	61.7	42.2	21.1	32
15V15EE016	6	6	12	7	5	12	6	6	12	1	1	1	1	1	9	9	9	9	9	16	15	10	16	23	59.3	\$5.6	83.3	59.3	26.4	45
15V15EE022	7	5	12	7	5	12	8	4	12	1	1	1	1	1	10.2	10.2	10.2	10.2	10.2	18	36	11	16	22	67.4	60.0	93.3	60.0	25.5	51
15V15EE023	6	4	10	5	5	10	7	1	10	1	1	1	1	1	6.6	6.6	6.6	6.6	6.6	14	13	8	12	16	50.4	46.7	63.3	43.0	17.9	33
15V15EE030	7	3	10	6	4	10	4	6	10	1	1	1	1	1	6.8	6.8	6.8	6.8	6.8	15	12	8	11	20	54.8	43.7	65.0	40.0	22.8	34
15V15EE039	4	3	7	3	4	7	4	3	7.	1	1	1	1	1	8.8	8.8	8.8	8.8	8.8	-14	14	10	13	16	51.1	51.1	81.7	47.4	18.2	- 44
AVERAGE	1	-		-	-		-		-	-							-	-	-	-	-				44.4	41.5	58.5	41.2	21.8	-

STAFF

1 Comprincipal

PRINCIPAL SIL TUMAKURU.

G U R Hoo Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572108.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF EEE

SUBJECT	MICROCONTROLLER	SUBJECT CODE	15EE52
---------	-----------------	--------------	--------

COURSE OUTCOME

- CO1. Outline the 8051 architecture, registers, internal memory organization, addressing modes
- CO2. Discuss 8051 addressing modes, instruction set of 8051, accessing data and I/O port programming
- CO3. Develop 8051C programs for time delay, I/O operations, I/O bit manipulation, logic and arithmetic operations, data conversion and timer/counter programming.
- CO4. Summarize the basics of serial communication and interrupts, also develop 8051 programs for serial Data communication and interrupt programming

CO5. Program 8051 to work with external devices for ADC, DAC

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G. H Rame Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology - TUMKUR-572106.

PRINCIPAL

SIET., TUMAKURU

COLLEGE	-	SHRI	DEVI	INSTI	TUTE	OFE	NGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	IE I	MR. M	ALLE	SH H	L						
BRAN	СН		. 1	EEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	v	8	SECTIO	N			
SUBJECT		MI	CROC	ONTR	OLLI	ER		SUBJE	ст со	DDE	15EI	352
CO & PO M	APPIN	NG								1		
Red Will	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	2	•			-		-	-	•			2
CO2	• 2	2		•	2	•	-	-	•	-	•	2
CO3	3	2	-	-	2	•	-	1.40	•	-	-	2
CO4	3	2	-	•	-	•		-	•		•	2
CO5	3	3	-	•			-	•	-	. 1	-	2
AVERAGE	2.6	2.25		-	2		•		•	• .	-	2
	1		E CE		dias	OVE	RAL	L MAP	PING	OF SUI	BJECT	2.21

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	43.9	0.88	•			•	•	-	•		-		0.88
CO2	36.7	0.73	0.73	-	•	0.73	-	-				•	0.73
соз	39.0	1.17	0.78	•	-	0.78	•	•		*	-	-	0.78
co4	36.1	1.08	0.72	•			•	-	-	-	**	•	0.72
CO5	23.2	0.70	0.70			•	•	•		-	-	-	0.46
AVERAGE		0.91	0.73	•		0.76	•		(*)	-	-	•	0.71
1944 1941 1941	19.13		- Gh					FINA	ALAT	TAINN	MENT I	EVEL	0.78

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106

S PRINCIPAL SIET. TUMAKURU.

Acadomic year	36	6.19		SEM	50			STUD	INTS-IA	_		Set	hypet		fICRO	CONTI	101.1.8	H	Subj	to Cede	176	£91								
SENER	14	TEAT IS	1516	LA	TEST 20	11MD	14	TEAT 3	1 SMB		ASSIGNO	MENT	QUIZ2M	10.17		511	MARK	5(198)	-			ATTA			1		individue	e co :		SEE TO
USN	C01	001	TOTAL	coi	C03	TOTAL	C04	CDS	TOTAL	C01	C02	cai	coi	cos	COL	CO:	CE0	C04	C05	4.5	1 1	43	4.5	4.5	001	C02	cos	C04	cos	80M
15V14EE001	10	5	15	10	5	15	8	7	15	1	1	1	1	1	5.2	5.2	5.2	5.2	5.2	16	21	6	11	23	66.1	66.3	25.3	45.7	94.7	26
15V14EE004	9	6	15	10	5	15	10	5	15	1	1	1	1	1	3.6	3.6	3.6	3.6	3.6	14	10	5	11	20	50.4	35.6	38.3	39.3	22.5	18
15V14EE010	7	7	14	8	6	14	10	4	14	1	1	1	1	1	3.4	3.4	3.4	3.4	3.4	11	10	4	11	16	42.2	38.5	36.7	42.2	18.9	17
15V15EE001	10	5	15	9	6	15	10	5	15	1	1	1	1	1	4	4	4	4	4	15	11	5	10	19	55.6	40.7	41.7	37.0	21.8	20
15V15EE004	9	6	15	10	5	15	10	5	15	1	1	1	1	1	8.6	8.6	8.6	8.6	8.6	19	15	10	16	25	68.9	54.1	80.0	57.8	28.3	43
15V15EE010	. 9	6	15	7	1	15	6	9	15	1	1	1	1	1	5.6	5.6	5.6	5.6	5.6	16	15	7	13	23	57.8	54.1	55.0	46.7	26.0	28
15V15EE011	.9	- 6	15	10	5	15	10	5	15	1	1	1	1	1	7.8	7.8	7.8	7.8	7.8	18	14	9	15	24	65.9	51.1	73.3	54.8	27.4	39
15V15EE014	7	7	14	8	6	34	9	5	14	1	1	1	1	1	7.A	7.4	7.4	7.4	7.4	15	14	8	15	21	57.0	53.3	70.0	57.0	24.6	37
15V15EE016	. 9	6	15	10	5	15	8	7	15	1	1	1	1	1	6.4	6.4	6.4	6.4	6.4	16	12	7	13	24	60.7	45.9	61.7	49.6	28.0	32
15V15EE022	10	5	15	10	5	15	10	5	15	1	1	1	1	1	6	6	6	6	6	17	12	7	12	22	63.0	44.4	58.3	44.4	25.3	30
15V15EE023	7	7	3.6	7	7	14	9	5	14	1	1	1	1	1	2	2	2	2	2	10	10	3	10	15	37.0	37.0	25.0	37.0	17.2	10
15V15EE030	7	3	10	6	4	10	4	6	10	1	1	1	1	1	1,4	1.4	1.4	1.4	1.4	9	6	2	5	14	34.8	23.7	20.0	20:0	16.6	7
15V15EE039	7	8	15	0	7	15	10	5	15	1	1	1	1	1	3.6	3.6	3.6	3.6	3.6	12	12	5	13	18	43.0	43.0	38.3	46.7	20.2	18
AVERAGE				-			_	-			-	-	-	-	-	-						-			43.9	36.7	39.0	36.1	23.2	

STAFF

6.4 HOD

PRINCIPAL

PRINCIPAL SIET., TUMAKURU

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572108.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF EEE

SUBJECT	POWER ELECTRONICS	SUBJECT CODE	15EE53
---------	-------------------	--------------	--------

COURSE OUTCOME

- CO1. To give an overview of applications power electronics, different types of power semiconductor devices, their switching characteristics
- CO2. To explain power diode characteristics, types, their operation and the effects of power diodes on RL circuits.
- CO3. To explain the techniques for design and analysis of single phase diode rectifier circuits
- CO4. To explain different power transistors, their steady state and switching characteristics and limitations.
- CO5. To explain different types of Thyristors, their gate characteristics and gate control requirements.

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G. HRoma Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

Stymmel when A

PRINCIPAL Ite CONTRAL

COLLEGE		SHR	DEVI	INSTI	TUTE	OFE	IGIN	EERIN	G & T	EÇHN	OLOGY	1
FACULTY	NAM	Œ	MRS. 1	ГНЕЈА	swi	NI R						
BRAN	СН		I	EEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	v	5	SECTIO	N	-		
SUBJECT		POV	VER E	LECT	RON	CS		SUBJE	ст с	DDE	15EI	353 .
CO & PO M	APPIN	G						_		1.0		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	2		-	*	-		-	-	-	•	•	2
CO2	2	•	-		-	•	•			1-	•	2
CO3	2	2	-	-	-	•	•	•	•			2
CO4	2	2		-		•			1.	۰		•
CO5	2	2	-	1	•	-		•	-	-	•	
AVERAGE	2	2	-			•		-	-		•	2
				191		OVE	RAL	L MAP	PING	OF SUI	BJECT	2

Car Bear	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1	43.0	0.86					-				-		0.86
CO2	39.2	0.78	-		-	-	-		-	-	-	•	0.78
CO3	54.6	1.09	1.09			-			•				1.09
CO4	39.0	0.78	0.78		-	-	•		•	-		•	•
CO5	20.7	0.41	0.41	•	-				-	-			•
AVERAGE		0.78	0.76	•	•	•	•			•			0.91
				H		112		FIN	AL AT	TAINM	MENT I	EVEL	0.82

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572196

Kend dle PRINCIPAL -

PRINCIPAL TUNNAURU

Academic year	241	8-15		SEM	580		1	STUD	ENTS-13			Sel	ijest.	P	OWER	ELECT	ROND	CS	Subje	et Code	158	888		-		1.1	0.0		_	10000
SEM IV	14	TEST H	1590	U	A TEST I	(15M)	U	TENT N	1996		MAIGNE	MENT	QUEZIS N	0		SER	MARK	S(M)				ATTA			1	Not	(individua	00 1		SEE To
DAN	con	C02	TOTAL	con	cm	TOTAL	C04	CDS	TOTAL	COL	C03	C01	C04	COM	coi	C01	cos	C04	COS	4.5	1 1	4.5	C04-3 4.5	4.5	COL	C02	CDJ	COF	cos	8054
15V14EE001	6	4	10	5	5	10	5	5	10	1	1	1	1	1	7,4	7.4	7.4	7.4	7.4	14	17	8	12	18	58.8	54.4	34.3	50.6	75.1	37
1SV14EE004	7	5	12	6	6	12	8	4	12	1.	1	1	1	1	7.2	7.2	7.2	7.2	7.2	15	14	8	13	18	56.3	\$2.6	68.3	48.9	20.9	36
15V14EE010	6	. 3	9	5	4	9	5	4	9	1	1	1	1	1	4.2	4.2	4.2	4.2	4.2	11	9	5	8	14	41.5	34.1	43.3	30,4	16.3	21
15V15EE001	5	5	10	7	3	10	6	4	10	1	1	1	1	1	7.2	7.2	7.2	7.2	7.2	13	11	8	13	19	48.9	41.5	68.3	48.9	22.1	36
15V15EE004	5	5	10	.7	3	10	5	5	10	1	1	1	1	1	9.2	9.2	9.2	9.2	9.2	15	13	10	15	22	\$6.3	48.9	\$5.0	56.3	25.5	46
15V15EE010	6	4	10	3	7	10	5	5	10	1	1	1	1	1	5.6	5.6	5.6	5.6	5.6	13	14	7	11	15	45.7	50.4	\$5.0	39.3	16.8	28
15V15EE011	6	- 4	10	7	3	10	5	5	10	1	1	1	1	1	6.2	6.2	6.2	6.2	6.2	13	10	7	11	19	48.9	37.8	60.0	41.5	22.1	31
15V15EE014	6	5	11	7	4	11	7	4	11	1	1	1	1	1	8			8	8	15	13	9	14	20	\$5.6	48.1	75.0	51.9	23.0	40
15V15EE016	5	5	10	6	4	10	6	4	10	1	1	1	1	1	9.8	9.8	9.8	9.8	9.8	16	15	11	16	21	58.5	54.8	90.0	58.5	23.9	49
15V15EE022	7	5	12	5	7	12	6	6	12	1	1	1	1	1	8.4	8.4	8.4	8.4	8.4	16	16	9	14	20	60.7	60.7	78.3	53.3	23.4	42
15V15EE023	5	- 4	9	4	5	9	5	.4	9	1	1	1	1	1	8.8	8.8	8.8	8.8	8.8	15	15	10	14	18	54.8	54.8	81.7	51.1	20.5	-44
15V15EE030	6	4	10	7	3	10	5	5	10	1	1	1	1	1	5.8	5.8	5.8	5.8	5.8	13	10	7	11	19	47.4	36.3	56.7	40.0	21.6	29
15V15EE039	5	5	10	5	5	10	7	3	10	1	1	1	1	1	8.4	8.4	8.4	8.4	8.4	14	14	9	14	17	\$3.3	53.3	78.3	53.3	20.0	42
AVERAGE	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-		-	-				43.0	39.2	54.6	39.0	20.7	

STAFF

HOD

PRINCIPAL In PRINCIPAL SIET. TUMAKURU.

SHRIDEVI

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF EEE

SUBJECT	SIGNALS & SYSTEMS	SUBJECT CODE	15EE54	
---------	-------------------	--------------	--------	--

COURSE OUTCOME

- CO1. Explain the generation of signals, behavior of system and the basic operations that can be performed on signals and properties of systems.
- CO2. Apply convolution in both continuous and discrete domain for the analysis of systems given impulse response of a system.
- CO3. Solve the continuous time and discrete time systems by various methods and their representation by block diagram

CO4. Perform Fourier analysis for continuous and discrete time, linear time invariant systems.

CO5. Apply Z-transform and properties of Z transform for the analysis of discrete time systems

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

1ambr DDINCIPAL

COLLEGE		SHRI	DEVI	INSTI	TUTE	OFE	NGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	E I	MR. G	HRA	VIKU	MAR						
BRAN	СН		I	EEE		А	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	V	5	SECTIO	N	14) I	-	
SUBJECT		SIC	SNALS	5 & SY	STEN	15		SUBJE	ст со	DDE	15E	354
CO & PO M	APPIN	₩G						1	1.	1		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3					-	1.		1.400	•	2
CO2	2	3				•	•		•	-		-
CO3	3	3			2		•			•	-	2
CO4	2	3		-	2			-		•	-	
CO5	2	3		•	2	•	•		-	••		
AVERAGE	2.2	. 3	-	•	2			•			-	2
					-	OVE	RAL	L MAP	PING	OF SUE	BJECT	2.3

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12
COI	34.9	0.70	1.05				-			-		7	0.70
CO2	32.1	0.64	0.96		-		-	-	-	4		•	•
CO3	38.6	1.16	1.16	-	-	0.77		•	•		-		0.77
CO4	31.9	0.64	0.96	•	-	0.64	-	•			-	•	-
CO5	17.7	0.35	0.53			0.35		•	-	•	-		
AVERAGE		0.70	0.93	•	-	0.59		•	+				0.74
enter selfi	2811	112		1918	1			FIN	ALAT	TAINN	MENT I	EVEL	0.74

G. U. R. Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology

in.

PRINCIPAI SIET. TUMAK

Academic year	38	18-19		SEM	78	1		STUD	ENTS-13		1.1.1.1	84	bjeet		HGNAI	54.81	STEM	15	Bullie	ei Cade	100	884	and the second	-						Sec. 10
SEM:IV	34	TENT IS	1961	- 14	TEST IN	INME.	10	TENTA	25M)		ANDONE	INTENT (QU12(5 N	ū .		561	MARK	Same.		State	Tatal Co	ATTA	NMENT	1.1.1.1			Individue	4.00		SEE To
UNN	001	cos	TOTAL	001	cou	TOTAL	0.04	cot	TOTAL	cos.	cus	cm	004	ens	COL	cor	000	004	108	4.5	1	4.5	45	4.5	005	cor	cus	004	cos	50M
15V14EE001	5	4	9	4	5	9	3	6	9	1	1	1	1	1	1.2	1.2	1.2	1.2	1.2	7	10	2	6	12	29.4	31.9	9.0	25.3	49.8	6
15V14EE004	\$	6	11	7	4	11	6	5	11	1	1	1	1	1	3.6	3.6	3.6	3.6	3.6	10		5	11	17	35.6	31.9	38.3	39.3	19.1	18
15V14EE010	4	3	7	4	3	7	4	3	7	1	1	1	1	1	1.8	1.8	1.8	1.8	1.8	7	6	3	6	10	25.2	21.5	23.3	21.5	11.3	9
15V15EE001	5	2	7	4	3	7	3	4	7	1	1	1	1	1	3.6	1.6	3.6	3.6	3.6	10		5	7	13	35.6	28.1	38.3	24.4	14.5	18
15V15EE004	5	6	11	5	6	11	8	5	31	1	1	1	1	1	6.2	6.2	6.2	6.2	6.2	12	13	7	13	17	45.2	48.9	60.0	48.9	19.8	31
15V15EE010	7	7	14	8	6	14	9	5	14	1	1	1	1	1	7.2	7.2	7.2	7.2	7.2	15	34	. 8	15	21	56.3	\$2.6	68.3	56.3	24.4	36
15V15EE011	6	6	32	7	5	12	6	6	12	1	1	1	1	1	2.6	2.6	2.6	2.6	2.6	10	9	4	10	17	35.6	31.9	30.0	15.6	19.1	13
15V15EE014	7	4	11	6	5	11	6	5	11	1	1	1	1	1	6.6	6.6	6.6	6.6	6.6	15	13	8	12	19	54.1	46.7	63.3	43.0	21.4	33
15V15EE016	. 8	6	34	7	7	14	9	5	14	1	1	1	1	1	5.8	5.8	5.8	5.8	5.8	.15	14	7	13	19	54.8	51.1	56.7	47.4	21.6	29
15V15EE022	9	4	13	8	5	13	. 6	7	13	1	1	1	1	1	10.6	10.6	10.6	10.6	10.6	21	17	12	16	27	76.3	61.5	96.7	57.8	30.6	29
15V1568023	4	4	8	5	3	8	4	4	. 8	1	1	1	1	1	2	2	3	2	2	7	0	3	7	12	25,9	22.2	25.0	25.9	13.8	10
15V15EE030	4	4	8	5	3	8 -	4	4		1	1	1	1	1	4	4	4	. 4	4	9		5	9	14	33.3	29.6	41.7	33.3	16.1	20
15V15EE039	6	6	12.	5	7	12	6	6	12	1	1	1	1	1.	7	7	7	7	7	14	15	8	14	19	51.9	\$5.6	66.7	51.9	21.8	35
AVERAGE		-		-	-		-	-		-	-	-		-	-	-	-	-	-	-	-	-	-		34.9	32.1	38.6	31.9	17.7	-

STAFF

G. LI R Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL V.S. inder !! PRINCIPAL SIET_ TUMARURU.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF EEE

15EE554 SUBJECT CODE SPECIAL ELECTRICAL MACHINES SUBJECT

COURSE OUTCOME

- CO1. Explain the performance and control of stepper motors, and their applications.
- CO2. Explain theory of operation and control of switched reluctance motor and permanent magnet brushless D.C. motors.
- CO3. Explain theory of operation and control of permanent magnet synchronous motors and synchronous reluctance motor.
- CO4. Explain operation of single phase special machines and servo motors.
- CO5. Explain operation of linear electrical machine and permanent magnet axial flux machines.

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning. Head of the Department

Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

Mn man MINIPAL

COLLEGE		SHRI	DEVI	INSTI	TUTE	OF E	IGIN	EERIN	G & T	ECHNO	DLOGY	1
FACULTY	NAM	E	MRS. S	SOWM	YA T	с			2	1	12	
BRAN	СН		I	EEE		A	CAD	EMIC Y	EAR	100	2018	-19
COURSE	B.	E	SEM	ESTE	R	v	8	SECTIO	N			1
SUBJECT	SPE	CIAL	ELEC	TRICA	L M	CHIN	ES	SUBJE	ст со	DDE	15EE	554 .
CO & PO M	APPIN	I G		6								
·····································	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2				-	•	-		•	2
CO2	2	2	2	-	•				-		•	2
CO3	2 .	2	2	-	-	3	•		-	;		2
CO4	2	2	2	-	•	•	•	100	•		•	2
CO5	.2	2	2		-	-	•		-			2
AVERAGE	2	2	2	-	-	.3		1		•	•	2
	-/x			•	1	OVE	RAL	L MAP	PING	OF SUI	BJECT	2.2

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	42.6	0.85	0.85	0.85	1.		-	-	•	•		•	0.85
CO2	40.6	0.81	0.81	0.81		-	-	•	-	-	-	-	0.81
CO3	55.2	1.10	1.10	1.10	-		1.66					-	1.10
CO4	40.2	0.80	0.80	0.80			-		-	•		-	0.80
CO5	20.8	0.45	0.45	0.45	•	-	•		-	10-22		12.1	0.45
AVERAGE	-	0.80	0.80	0.80	•	-	1.66		•		-		0.80
			H.L.		i fel		1981	FIN	AL AT	TAIN	MENTI	EVEL	0.97

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572108.

PRINCIPAL SIET., TUMAKURU.

Academic year	201	8-19		SEM	544			STUD	ENTS-13			54	lijet	SPEC	TAL ELE	CTRICS	L MAC	UNES.	Selde	er Cade	1581	1984								
SEMILY	14	TEST III	(SM)	14	TEST 20	1556)		TEST A	15M1		ASSACTOR	MENT /	QUIZES M	0		583	MARN	Sames		1.1.1.2	Tatal Ca	ATTAI	MENT			8.0	Indulate	00 %		SEE TO
USN	COL	C02	TOTAL.	C02	C03	TOTAL	C04	cas	TOTAL	001	002	603	C04	0.08	C01	cor	C03	004	C05	4.5	2 2	13	4.5	4.5	COL	C01	6003	CD4	C05	IOM
15V14EE001	5	3	8	4	4	8	3	5		1	1	1	1	1	6.2	6.2	6.2	6.2	6.2	12	14	7	10	16	49.8	44.4	29.4	41.6	66.1	31
15V14EE004	6	6	12	5	7	12	7	5	12	1	1	1	1	1	7.8	7.8	7.8	7.8	7.8	15	16	9	15	19	54.8	58.5	73.3	54.8	21.6	39
15V14EE010	5	2	7	4	3	7	3	4	7	1	1	1	1	1	6.2	6.2	6.2	6.2	6.2	12	10	7	9	15	45.2	37.8	60.0	34.1	17.5	31
15V15EE001	5	5	10	6	4	10	4	6	10	1	1	1	1	1	6.6	6.6	6.6	6.6	6.6	13	12	8	13	20	45.7	43.0	63.3	46.7	22.5	33
1SV1SEE004	6	5	11	5	6	11	5	6	11	1	1	1	1	1	6	6	6	6	6	13	13	7	12	18	48.1	48.1	58.3	44.4	20.7	30
15V15EE010	5	6	11	6	5	11	6	5	11	1	1	1	1	1	7.2	7.2	7.2	7.2	7.2	13	13	8	14	19	48.9	48.9	68.3	52.6	22.1	36
15V15EE011	6	6	12	5	7	12	7	5	12	1	1	1	1	1	7.2	7.2	7.2	7.2	7.2	14	15	8	14	18	52.6	56.3	68.3	52.6	20.9	36
15V15EE014	7	5	12	.6	6	12	5	7	12	1	1	1	1	1	6.2	6.2	6.2	6.2	6.2	14	13	7	12	20	52.6	48.9	60.0	45.2	23.2	31
15V15EE016	6	5	11	7	4	11	4	7	11	1	1	1	1	1	8.6	8.6	8.6	8.6	8.6	16	14	10	15	24	57.8	50.4	80.0	54.1	27.1	43
1SV15EE022	8	5	13	.5		13	9	4	13	1	1	1	1	1	9.8	9.8	9.8	9.8	9.8	19	19	11	16	20	69.6	69.6	90.0	58.5	22.8	49
1SV15EE023	4	4	8	5	3	8	5	3	8	1	1	1	1	1	8.2	8.2	8.2	8.2	8.2	15	12	9	13	17	48.9	45.2	76.7	48.9	19.8	41
15V15EE030	-5	5	10	6	4	10	4	6	10	1	1	1	1	1	10	10	10	10	10	16	15	11	16	23	59.3	55.6	91.7	59.3	26.4	50
1SV15EE039	5	6	11	7	4	11	7	4	11	1	1	1	1	1	6.6	6.6	6.6	6.6	6.6	13	12	.8	14	19	46.7	43.0	63.3	50.4	21.4	33
AVERAGE			-		-				-		-			-	-	-								-	42.6	40.6	55.2	40.2	20.8	-

STAFF

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-57210

G. HRanz

PRINCIPAL inter · PRINCIPAL SIET TUMAKURU.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

1.2 -

DEPARTMENT OF EEE

SUBJECT	RENEWABLE ENERGY SOURCES	SUBJECT CODE	15EE563
---------	--------------------------	--------------	---------

COURSE OUTCOME

- CO1. Discuss causes of energy scarcity and its solution, energy resources and availability of renewable energy.
- CO2. Discuss energy from sun, energy reaching the Earth's surface and solar thermal energy applications.
- CO3. Discuss types of solar collectors, their configurations, solar cell system, its characteristics and their applications.
- CO4. Discus generation of energy from hydrogen, wind, geothermal system, solid waste and agriculture refuse.

CO5. Discuss production of energy from biomass, biogas, sea wave and ocean thermal energy.

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in to resolve contemporary issues and acquired if the Destamening. G. u. R. M. PRINCIPAL DESTANCE

Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology

COLLEGE		SHRI	DEVI	INSTI	TUTE	OFE	NGIN	EERIN	G & T	ECHNO	DLOGY	e:
FACULTY	NAM	IE I	DR. H	B PHA	NIRA	JU						
BRAN	СН		I	EEE		А	CAD	EMIC Y	EAR		2018	-19
COURSE	B.)	E	SEM	ESTE	R	v ·	5	SECTIO	N			
SUBJECT	RE	NEWA	BLE	ENER	GY SC	OURCE	s	SUBJE	ст со	ODE	15EE	563
CO & PO M	APPIN	NG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2			2			• 1	• •	+	2
CO2	2	2	2	•	-	2	-	-	•	12	-	2
CO3	2	2	2			•	-	2	•	-	•	2
CO4	2	2	2			2			•		•	2
CO5	2	2	2	-		°2	•	*	2	•	•	2
AVERAGE	2	2	2	-		2	•	2	2	•	-	2
	112		19.4		The second	OVI	RAL	L MAP	PING	OF SUI	BJECT	2

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	47.9	0.96	0.96	0.96			0.96	•	•				0.96
CO2	44.1	0.88	0.88	0.88	-	-	0.88		+		-	-	0.88
CO3	61.4	1.23	1.23	1.23	•	-	-	•	1.23	•	•	-	1.23
CO4	44.0	0.88	0.88	0.88			0.88		-	-		-	0.88
CO5	23.1	0.46	0.46	0.46	•	1	0:46	•		-			0.46
AVERAGE		0.88	0.88	0.88	•	•	0.80	•	1.23	0.46		-	0.88
	482.5		(-1)-					FIN	AL AT	TAIN	MENTI	EVEL	0.86

G. U. 3 Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SHAKURU.

Acadvesic year	:38	95.28	1.1	M.M.	14		-	ATUD	ENTS+D	1			Quet	· · · · · ·	1	NES			Subje	et Code 1	1980	040			1		-	1	1.0	
BERGIV	IA	TEAT II	LINN ;	Ú	TENT 2	1196	10	TEST 3	1556	1	ASSECTO	MENT	OUTLOU N	0.		111	MARK	100			Total Ca	ATTAI	NMENT			5.0	induided	00		SEE To
UNN .	-001	cos	TOTAL	cor	cos	TOTAL	C04	C05	TOTAL	COL	cor	cos	C04	0.08	COL	cot	C00	C04	COS	4.8	200-3	4.1	45	4.1	001	C01	cas	C04	COL	SUM
15V14EE001	4	4	8	6	2	8	4	4	8	1	1	1	1	1	8.4	8.4	8.4	8.4	8.4	13	19	9	13	29	54.7	60.6	38.4	54.7	79.2	42
15V14EE004	7	5	32	6	6	12	7	5	12	1	1	1	1	1	7.8	7.8	7.8	7.8	7.8	16	15	5	14	20	58.5	54.8	73.3	51.1	22.8	39
15V14EE010	4	3	7	3	4	7	4	3	7	1	1	1	1	1	7	7	7	7	7	12	12	8	11	14	44.4	44.4	66.7	40.7	16.1	35
15V15EE001	6	6	12	7	5	12	6	6	12	1	1	1	1	1	8.4	8.4	8.4	8.4	8.4	15	14	9	15	22	\$7.0	53.3	78.3	57.0	25.7	42
15V15EE004	1	5	12		.4	12		4	12	1	1	1	1	1.	1	8	8	8	8	16	13	9	14	21	59.3	48.1	75.0	51.9	24.1	40
15V15EE010		6	14	6	8	14	9	5	14	1	1	1	1	1	10.4	10.4	10.4	10.4	10.4	19	19	11	17	22	71.9	71.9	95.0	64.4	25.7	52
15V15EE011	5	3	8	5	3		4	4	. 8	1	1	1	1	1	7.8	7.8	7.8	7.8	7.8	14	12	9	12	18	51.1	43.7	73.3	43.7	20.5	39
15V15(E014	7	7	14		6	14	7	7	14	1	1	1	1	1	6.4	6.4	6.4	6.4	6.4	14	13	7	14	22	53.3	49.6	61.7	53.3	25.7	32
15V15EE016	8	5	13		5	13	9	4	13	1	1	1	1	1	10.6	10.6	10.6	10.6	10.6	20	17	17	17	24	72.6	61.5	96.7	61.5	27.1	53
15V15EE022	7	7	14	8	6	14	6	8	14	1	1	1	1	1	9.2	9.2	9.2	9.2	9.2	17	16	10	17	26	63.7	50.0	85.0	63.7	30.1	46
15V15EE023	7	6	13	9	4	13	9	4	13	1	1	1	1	1		8	8.	8		16	13	9	15	22	59.3	48.1	75.0	55.6	25.3	40
15V15EE030	5	4	9.	5	4	9	6	3	9	1	1	1	1	1	8.6	8.6	8.6	8.6	8.6	15	14	10	3.4	18	54.1	50.4	80.0	50.4	20.2	43
19V156E039	8	5	13	7	6	13	6	7	13	1	1	1	1	1	9	9	9	9	9	18	16	10	15	,24	66.7	59.3	83.3	\$5.6	27.6	45
AVERAGE	-			-	-	-		-			-	-	-	-	-	-	_	-	-		-	-		-	47.9	44.1	61.4	44.0	23.1	

STAFF

.

15EE 563

Head of the Department Electrical & Electronics Engineering Shrid&ArkStute of Engineering & Technology TUMKUR-572106

6 . 44

PRINCIPAL inter

PRINCIPAL SIET, FUMAKURU

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

SUBJECT

POWER SYSTEM ANALYSIS 2

SIS 2 SUBJECT CODE

1SEE71

COURSE OUTCOME

COI	Formulate network matrices and models for solving load flow problems.
CO2	Perform steady state power flow analysis of power systems using numerical iterative techniques.
CO3	Solve issues of economic load dispatch and unit commitment problems.
CO4	Analyze short circuit faults in power system networks using bus impedance matrix.
CO5	Apply Point by Point method and Runge Kutta Method to solve Swing Equation

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology

PRINCIPAL SIET., TUMAKURU

COLLEGE		SHR	RIDEVI	INSTI	TUTE	OFE	NGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	IE	TANU	JA KS								
BRAN	СН		1	EEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	IESTE	R	vн		SECTIO	N		EEE	
SUBJECT		POW	ER SY	ГЕМ А	NALY	SIS 2		SUBJE	ст со	DDE	18EI	E71
CO & PO M	APPI	NG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	1	3	3	2	3	3					3	3
CO2	1	3	3	2	3	3					3	3
CO3	1	3	3	2	3	3		1			3	3
CO4	1	3	3	2	3	3		1			3	3
C05	1	3	3	2 .	3	3		1			3	3
AVERAGE	1	3	3	2	3	3					3	3
		1	-	-	-	OVE	RAL	L MAP	PING	OF SUE	JECT	1.75

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	40.22	0.40	0.81	0.81	0.80	0.81	0.81					0.81	0.81
CO2	35.58	0.35	1.17	1.17	0.71	1.17	1.17					1.17	1.17
CO3	40.22	0.40	0.80	0.80	0.80	0.81	0.81				-	0.81	0.81
CO4 *) 40.22	0.40	0.80	0.80	0.80	0.81	0.81					0.81	0.81
CO5	40.22	0.40	0.80	0.80	0.80	0.81	0.81					0.81	0.81
AVERAGE	39.29	0.39	0.87	0.87	0.78	0.87	0.87					0.87	0.87
		242.34			-			FIN	AL AT	TAINM	AENT L	EVEL	0.79

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572108.

PAL AKURU.

409-109-010	Concision of the	POPULAR AND	00000000	9101001000	VIOLONAL DEL	STORAGE MAIN	CONDICTION	SOUTHING NO.	1/W/1/Million	COLEMAN	COLUMN 1	A1008801461	CONTRACTOR OF	100100000	CURPLEMA .	1041141.000	010111111111	0009911001	1341483500	100		August lines	
14	-	10	11	=	1.0		1.	16	1.8		11	Ξ	;		-	÷	=	1.8	1.6	10.14	14		
10	1	11	- 10	1.8	11	1.0	11	1.6	1.8	4.4	11	11	1.6	1.6	11	1.8	11	18	1.5	1000	APPLACED INTO	61.9181	
21	1	-	-	3.6	2	:	13	56	3.6	+2		43	12	1	1.4	10	•	5	3	WINN.	ON ON		
1.	ŀ	11	11	-	18	1.8	16	1.0	1.0	- 63	11	11.	1.4	1.4	1			1.8	1.0	1001		NUM	ľ
1	ŀ	14	-	-	1.0		- 10	-10		1	1.1	1	-	+ 0	1.1	-		1.0	- 1.0	1111	IT LAST VE		l
11		-		;	-	14	-		ŧ	+1	-	-	1	5	14	5	4		- 14	WTHII .	100		ĺ
-		1		-	1.0	1.0	1.6		1	11	11	11	1		11	-	-	1.4	1.6	- 014			
		-		-	-	1.0	-		1	11	-	1.1		1.6	1.1	-	11	-	1.0	1.00	A TENT IS	Trial stre	
2	1			=	2		=	5				:	2	5	-	-	e	2	5	1 lot	(Mak)	1	
	ļ.		ļ	t			-	-		_	_	_				ļ	_	-				,	ĺ
ţ,	t				_	-				_	-						-			- 100	ANOS		l
t				L	-	-	-			-	-	+		_			_	-	-	100	LAUNDAL D		ĺ
1		-						-		-	-				-		-	-	-	1 104	000000	Indust.	
-	t		-	-	_	_	-			-	-	_		-	-		_	-	-	110		-	TAXABLE INCOME.
t	ł						-										-	-		1.1		AV WINNER	
1	1	1	t	1	-	×	5	-		-	5		10	10	5	1	5.	-		80. 10		VIEN AN	ľ
11	ŀ	1	C	1	-	=	-	5	4		5	-	1	14	14	=	0.4				N 115	471,292	ŀ
11	Ļ	:	c	:		H	:	:			:		14	5.6	1.1	:	i,	:		100	VIEW		
-							Ļ												l	114			ŀ
T	Ī	ľ	Ī	ſ	Ĩ	Ī	ſ	Î	Ī	Ĩ	ſ	Ī	Ī	-	Ē	Ē	Î		ľ	1.11		ļ	l
F	f	1		-	-	=	-	1	-		+		14	14	5	:	-	:				- market	
1	f	i.		11	1.4	12.0	1.4	11	4	5	-	11	2	0	-	1	-	4	11.4	11-18-4		1	l
	144	-	111		114	114	ŝ	10	11.4	=	=	11.0	E.U.	-	4	-	ē	144	-	010100	Tank	-	
	1	11.1	1.1	12.1	11.4	12.0	-	10.4	11	121		101	11			14	184	- 12	- 11.6	「たいます」」また	C-ATTAIN	141111	
	-	10.7	10	123	11.1	11.0	11.4	10.4		121		121	-			1	- 117	1.0	111	114-16	FACING		
		111	10	÷.	10	11.4	111			123	- 44	121	-	14	- 10	14		19	116			ſ	
TI ATA	INCOMENT.	44.73684	10 NH	1.0.00	10,000	11.18	with the law	108.04	10.64011	12,000-16	+ tark of with	Little in	NINN	address of	11344-14	Collect of	#11/134	14,1804	11 0000	100			
Thermost as	-	an Ni dalah	VORTY 38,78384	PHOTON PO	Appropriate (1)	TREAC BE. 41		14 34 5767	13 94 MORT	subliche 11	1012 30 2101	#8#00.16 Ltc	PORT OF 152	Tumps 14	MAC 21 11	10 2842444	88 20.01484	PRED OF AP	64/140/11 10	600			
CALCE TA TA		10 44.73894	11	44 41.50440	+11/06.124 (8)	-	PLUSE25 1	PLUGBED 18	E1 M. 64(11)	3	HUTLE I	-	10.000	10 10 AC 10	ULLING NO.	ALC: NO. OF COMMAND	¢	10,100	10,000	1014	A 14 Months	h	1
ACT TA DAY	÷	1	NCTV 11/2000	+	etitatia etita	if se start	PLASS - 41.92114	-	×	100112	WH H TIM	1007 01 4007	ALT: 00 100		8	and an important	PLIM U.P.	NULL PLANE	-		14-4 (F)	-	
	i,	718.84 44.7	CIT LONG	10400 CT 20	e	the cont	PLINE IN WLINE	14074 AL 40	MALTI MINATIO	3	-	10	04 19 06 4 00 F	101101 St. 81280	avit 111148	Ŧ	NOR BETA	T H	NAME DAMAGE	144 1.144		-	
THE PART	Two w	1 Miles	149	-	BULLINE.	Then a	1114	11,118	112	21866	1004	1007	104	1000	#110#	ł	1118	Vanci.	(charle)	-			

G. U. R. Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

3.1

PRINCIPAL SIET., TUMAKURU

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

SUBJECT	POWER SYSTEM PROTECTION	SUBJECT CODE	15EE72	ł

COURSE OUTCOME

STREWUT

C01	Discuss performance of protective relays, components of protection scheme and relay terminology over current protection.
CO2	Explain the working of distance relays and the effects of arc resistance, power swings, line length and source impedance on performance of distance relays.
CO3	Discuss pilot protection, construction, operating principles and performance of differential relays and discuss protection of generators, motors, transformer and Bus Zone Protection.
CO4	Explain the construction and operation of different types of circuit breakers.
CO5	Outline features of fuse, causes of overvoltages and its protection, also modern trends in Power System Protection

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

6.4 Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET. TUMAKURU

COLLEGE		SHR	IDEVI	INSTI	TUTE	OFE	NGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	IE	UMA E	BAI								
BRAN	СН		ł	EEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	VII		SECTIO	N		EEE	
SUBJECT	P	OWEF	R SYST	EM PI	ROTE	CTION		SUBJE	стс	DDE	15EI	E72
CO & PO M	APPI	NG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3		2					1				
CO2	2	2	3			2			2			
CO3	3		2			2						
CO4	3		3			2			2	1.42	242	17
C05	2	2	3			2	2		2		1	2
AVERAGE	2.6	2	2.6			2	2		2			2
						OVE	RAL	L MAP	PING	OF SUE	JECT	2.12

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	47.61	1.23		1.23									
CO2	41.60	1.08	0.83	1.08			0.83			0.83			
CO3	47.61	1.23		1.23			0.95						
CO4	47.61	1.23		1.23			0.95			0.95			
C05	47.61	1.23	0.95	1.23			0.95	0.95	4	0.95	1	1	0.95
AVERAGE	46.4	1.2	0.89	1.2			0.92	0.95		0.91			0.95
TOP DE		-		115				FIN	AL AT	TAINN	MENT L	EVEL	1.00

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

cht:

51

M PROTECTION		4			and 20 States States States States	Subject 1	20 Schine	20 Colored Colored	Taul around 1 10 Subject	Total country 20 1 Sedicer	1 1 Tard areasily 20 1 1 Solice	SCM 1 71 Tank conserts 20 5 Section 19
SEE MARKSON	245 MD	A SAME AN ADDREENT OF THE	15		+		+	IA TEST RISMI	IA TEST DIM IN TEST RISMI	IA TEST DISL IN TEST RISMI	IA TEST DISL IN TEST RISMI	SMI IA TEST BISI IN TEST RISMI
10 00	CO4 CO8 CO3	C03	0.00	C01 C01	T01AL C01	COS TOTAL CO1	COI COS TOTAL COI	TOTAL CON COS TOTAL CON	TOTAL CON COS TOTAL CON	COM TOTAL COM CON TOTAL COM	COT COJ JULAL CON COS TOTAL CON	TUTM. COL COM 10TAL CON CON TOTAL CON
10.00			+	1 1	1 1 1			1 2	1 2	1 1 1	2 2 4 2 2	
8.2	1 1		-	1 1	1 1 1	2.1	11	23 25	42 21 21	1 21 21 42 21 21	42 21 21 42 23 23	21 42 21 21 21 42 21 21
11 II II II	1 1	1	+	1 1	1 1 8	25		25 25	8 25 25	25 25 25 25	1 24 25 5 25 25	25 1 28 25 5 25 25
10.2 - 10.2	1 1		-	1 1	4 X 1	2 2 4 1 1	1 2 2 4 1 1	2 4 2 2 4 1 1		*	A 4	2 2 4
10.4	1 1 1		-	1 1	3.6 1 1 1	1.0	-	1.8 1.6	1.8 1.6	10 36 35 10	14 14 34 18 14	14 14 14 14 14 14 14 14
25 24	1 1	1	-	1 1	1 1 1	16	16 16	16 16	12 15 16	16 12 15 16	16 16 12 16 16	16 16 12 16 16
7.6	1 1	1		1 1	1 1 1	5 15 3 F F	1 15 15 3 1 1			1 12 N	1 12 N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 12	1 1	1	-	1 1	8 1 1	12 - 25 - 3 - 1 - 1	X 25 25 3 1 1			25 8	25 8	5 25 25 X
14 25 54 24	1 1	1	1	1 1	1 1 1	1.6	16 16	16 16	32 16 16	32 16 16	16 16 32 16 16	16 22 26 26 32 16 18
11 11 11 11	1 1	1	-	1 1	44 1 1	11	23. 23.	23. 23.	23. 23.	23. 23.	23 24 21 21	23 24 21 21
4.0 8.0 6.0 8.0	1 1	+	+	1 1	AN 1 1	11		10.00	10.00	11 11 24 11 11	10 10 26 20 10	26 21 26 26 21 28
	1 1		+	1 1	1 1 1	1.8		1.6 1.6	14 14 14	14 32 14 18	10 14 12 14 18	14 14 14 14 14 14
10.6 10.6 10.4 10.4	1 1	1	1	1 1	12 1 1	3.6		1.6 1.6	32, 14 16	16 32 16 16	3.6 3.6 3.2 3.6 3.6	3.6 3.6 3.2 3.6 3.6
10.4 10.4	1 1	1	-	1 1	1 1 1	14	1.6 1.6	1.6 1.6	3.2 1.6 1.6	26 32 16 16	16 26 33 16 16	52 26 25 33 16 16
	1 1	1	-	1 1	1 1 1	3 11 3 1 1	1 11 3 1 1			1.6 1.	1.6 1.	1 10 10 1
14 35 3.6 9.6	1 1		1	1 1	42 1 1	21.	42 21 21 42 2 1 1	20 21 21	20 21 21	13 14 20 20 D	1 24 25 44 20 20	1 24 25 44 20 20
10.4	1 1			1 1	41 1 1	11	25 24	25 24	12 52 24	1 21 25 44 25 24	1 21 22 42 23 24	4.1 2.1 2.5 4.2 2.5 2.1 2.1
10.6 10.6 10.6 10.6	1 1	1	-	1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						2 2 2 4 2 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4
10.2	1 1	1	-	1 1	1 1 1	7 4 1 1		T 4 7 7 4 1 1	2 2 4 2 2 4 1 1	2 2 4 2 2	2 2 4 2 2	2 2 4 2 2
11 11 11	1 1			1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

G. U. Rows Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572108.

PRINCIPAL SIET., TUMAKURU

	1	1	
	Ъ.	1	
1	PIR	ERVI	

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

SUBJECT	HIGH VOLTAGE ENGINEERING	SUBJECT CODE	15EE73	Ľ.,
oc bo Let	indir (ournor) in our on the			

COURSE OUTCOME

COI	Explain conduction and breakdown phenomenon in gases, liquid dielectrics and breakdown Phenomenon in solid dielectrics.
CO2	Summarize generation of high voltages and currents
CO3	Outline measurement techniques for high voltages and currents
CO4	Summarize overvoltage phenomenon and insulation coordination in electric power systems.
CO5	Explain non-destructive testing of materials and electric apparatus, high-voltage testing of electric apparatus

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G- H RAM Head of the Department

Electrical & Electronics Engineering* Shridevi Institute of Engineering & Technology TUMKUR-572106.

Kennen la PRINCIPAL SIET., TUMAKURU,

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF EN	GIN	EERING	5 & TI	CHNO	LOGY	
FACULTY	Y NAN	1E	SHWE	ГНА Т	м							
BRAN	КСН		F	EEE		А	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	VII	5	SECTIO	N		EEE	
SUBJECT	н	IGH V	OLTAG	GE EN	GINEI	ERING		SUBJE	стс	DDE	15EI	E73
CO & PO M	APPIN	iG										0.00
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1121212	1	2	3	4	5	6	7	8	9	10	11	12
C01	2	3	2	2	31						2	1
CO2	2	2	3	1	2						2	I
CO3	2	3	3	2	1						2	1
C04	2	2	2	2	2						2	1
C05	2	3	3	1	1			1			2	1
AVERAGE	2	2.6	2.6	1.6	1.4				1.2		2	1
					0.20	OVE	RAL	L MAP	PING	OF SUE	BJECT	1.88

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	37.89	0.75	0.98	0.98	0.60	0.53				14		0.75	0.37
CO2	34.56	0.69	0.89	0.89	0.54	0.48						0.69	0.34
CO3	37.89	0.75	0.98	0.98	0.60	0.53						0.75	0.37
CO4	37.89	0.75	0.98	0.98	0.60	0.53					-	0.75	0.37
C05	37.89	0.75	0.98	0.98	0.60	0.53						0.75	0.37
AVERAGE	37.22	0.73	0.96	0.96	0.58	0.52						0.73	0.36
						÷		FIN	AL AT	TAINN	MENT L	EVEL	0.69

G. H & March Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106

÷.,

50 PRINCIPAL SIET., TUMAIOURU

			605	41.05.14	84 73554	2	47.466172	112000-140	15.78947	21.42857	10,000,000	1081211	45, 448272	13,08271.	34,56647	40.6015	17.96962	39-00778	133,08271	32,59986	39.47368	5584/511	1
	T		004	42.05714 4	44.730684 4	2	45, AMR72 4	N. 46617 3	13.78947	22.4295.7	48.45634	11.57895 3	45.48872	11/080/11	34.56647	40.6015	11 96942	19.09274 3	11.080.01	17.58396	19.47368	1.5999(2.11	40.49634
		% of extinetial CD	001	42.85714 4	44.73684 4	10	45,48871	10,46617 3	LS 78943 3	JL 4385.7 2	ALCOR. 10	1,57996 1	ofs. 48897.1 A	1): 08/171	14.5864T 3	40,0005	2.966932	E BULLED 16	11/2/80 11	17 59398 3	19.47308 3	10.57995 3	45.42634 4
		Auf.	6.02	19.10014 4	40 2008 V	43.12546	NUMBER OF	N-00010 N	11.164991.11	43.32344	4.423.06	110% 4	34.421H	11.23447	N. 20178 3	HARDON H	17 38822 3	0.04048	IA 60811	10,25615,18	17.04.048	47,1365-13	16:41.733
			001	42,85334 3	44.73684	60	(13865-)	10,46613	15, 76947 1	23,44857 4	48,496,14	11.3.1996	45.48872	11130.43	ta tagari	ALAUN I	16466216	10.000 PA	11/2/06/23	17.59396	38 47.568 I	11, 528860.	C 10/160-30
			4.46-10	11.4		0.0	111	10		44		Ē	Ċ	8.8	12	14.8	14.1				14.5		11.6
		MICH1	OP-DA.A	11.4	- 6714	11	0.0	4.4	17	44	12.6	11	11.1	2	11	- 111	1.0.1	18.4	-	н	10.6	- 13	+11.4
	- 6	ATTAIN	C03-344 1	11.4	11.0	100	12.4	- M.C.	- 14	44	67)	1	121	1.1	-14	11.1	1.14	111	-		14.5	8.4	11.0
	10000	Tank Cas	C00-34.7 8	14.1	11.4	14.6	12.4	11	51	14.6	11.6	10.4	11.6	113	111	11.6	114	11.1	=	13.4	11.8	14.2	14
	Cuele		01-04.4	114	- 671	101	111	9.7	17	11	610	N	121	1.1	11	100	16.1	10.4	-		18.81	- 18	11.9
	Subject Cude		CO0 16	6.6	6.6	10	-	1.1	14	241	9.6	14	10.0	+	6.6	-	-	1.4	141		3.4	3.6	9.6
	Ī		001	8.6	10	-		172	1.4	116	-	16	11		99	-	-	14	1.8	1	14	3.6	1
	BING	MARK STRON	000	11	11	101	*	171	14	2.4	9.4	14	1	*	44	-	*	3.4	1.4	1	3.4	5.8	11
	HIGH VOR LAGE KNOGSNESHING	SEE	103	9.0	1.6	10		12	1	2.6	9.6	1.6	8.8		9.9		8.	7.4	3.8	*	3.4	3.6	3.6
THE PART OF LAND	UTAGE K		CO100	4.6	9.6	1	-	111	1.4	14	1.4	16			99	-	6	1.4	5.8		3.4	5.6	11
NAME JOINT	HIGH VO	ſ	000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A LINIS	Ę	104 5771	001	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
	Subject	ASSIGNEMENT/ QUI	000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		ASHONE'N	C02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			100	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	+	-	-	-
		ļ	10TAL	14			42	-	14	42		14		91	25	3.6	42				3	3.6	11
	Tetal strength	IA TEST MEMO	C08	19	11	1.1	17	1.5	-	11	1.1		11	1.6	1.6	10	11	-	~	~	2.1	1.8	2.8
	1.	1 V J	100	1.8	1.1	11	1.1	11	11	2.1	1.5	- 11	17	1.8	16	1.0	11	4	à	~	11	81	2.2
			TOTAL	1.4	44	44	17	-	3.6	14		3.6	4.6	3.6	11	3.6	17	+			17	3.6	-
	+	1A TEST 1050	C00	18	10	11	11	1.5	1.1	17	15	1.0	23	1.0	1.6	1.0	11		~	~	11	3.8	2.8
	SEM 1	IA	C01	14	1.1	1.1	2.1	15	1.4	11	2.5	18		11	16	-	17	~	-	~	11	2.8	2.8
		-	TOTAL.	44	44	41	41	-	11	4.1	4	14	17	11	3.2	16	17	+	-	-	4.7	1.6	4.8
	2018-11	IA TEST HEMI	C01	11	11	17	1.1	1.5	1	1.1	13	11	2.1	11	14	1.0	11	~	-	-	11	1.8	1.1
		TAT	601	1.6	3.1	11	11	- 17	1.8	2.1	3.5	1.8	11	1.6	1.6	1.8	23	1	~		10	1.8	5.5
	Academic sear		(NN)	19/15413096	CW1560001	19V1510007	AN ISCOOM	10/15/0022	194156001F	INTERESTS	1941566913	TSVLNEGUB	15w1541020	INUSTOR4	1001001wS1	1941241012	Sur568883	Partserust	541511036	110101/1403	TSV1001404	19V16615400	1001001001

G. U. Row-Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572196.

Gungt PRINCIPAL SID: 105000RU

() HIGIRYI

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

SUBJECT	UTILIZATION OF ELECTRICAL	SUBJECT CODE	15EE724
SUBJECT	POWER	SUBJECT CODE	1566/24

COURSE OUTCOME

CO1	Discuss different methods of electric heating & welding.
CO2	Discuss the laws of electrolysis, extraction, refining of metals and electro deposition process.
CO3	Discuss the laws of illumination, different types of lamps, lighting schemes and design of lighting systems.
CO4	Analyze systems of electric traction, speed time curves and mechanics of train movement.
CO5	Explain the motors used for electric traction, their control & braking and power supply system used for electric traction

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G. U.K.M. Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology - TUMKUR-572106

PRINCIPAL SHE LAND NURU

COLLEGE		SHR	IDEVI	INSTI	TUTE	OFE	NGIN	EERIN	G & T	ECHNO	DLOGY	t
FACULTY	NAN	1E	SOWM	IYA T	с						1	
BRAN	СН		I	EEE		А	CAD	ЕМІС У	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	VII	1	SECTIO	N		EEE	
SUBJECT	U	TILIŻ	ATION	OF E	0.00-0.0	RICA	L	SUBJE	ст со	DDE	15EE	724
CO & PO M	APPE	NG								-		
1.2.15	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
COI	2	3	2	2	2	1	1		1			1
CO2	2	3	3	3	2	1	1		1			3
CO3	2	3	2	1	2	1	1		1			I
CO4	2	3		1	2	1	1	1	1		-	I
CO5	2	3	2	1	2	1	2	1	1			3
AVERAGE	2	3	2.25	1.62	2	1	1.2	1	1			1.8
	R. P					OVE	RAL	L MAP	PING	OF SUE	BJECT	1.763

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	39.96	0.79	1.19	0.89	0.64	0.79	0.39	0.47		0.39			0.71
CO2	36.32	0.72	1.08	0.81	0.58	0.72	0.36	0.43		0.36			0.65
CO3	39.96	0.79	1.19	0.89	0.64	0.79	0.39	0.47		0.39			0.71
CO4	39.96	0.79	1.19		0.64	0.79	0.39	0.47		0.39			0.71
C05	37.91	0.75	1.13	0.85	0.61	0.75	0.37	0.45	2	0.37			0.68
AVERAGE	38.82	0.8	1.15	0.86	0.62	0.76	0.38	0.45		0.38			0.69
								FIN	AL AT	TAINN	MENT L	EVEL	0.67

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

4.5

0.9 Sho PRIMO s - Ster, ruhus .RU.

A COLORADOR		and the	C.M.S.					a to the state		100 0	10	10	THANK THE	STATE NAME: SOMPATA TC													
Academic year		2018.09	58.V0		1 m	-	Total	Total strength		*		Subject.	VILLIN'	TION OF	1.14.1 1804	THAZATION OF KLAR TRICAL POWER		Subject Code	Cake	1/4/13/4	34			-	-		H
10000	14	EA TEST (05M)		14.1	1A TEST 2050		IA TES	IA TEST ALSON		ASS	ASSIGNEMENT	/ OCUPAS M			4	SAT MARKSON	100			Tetal Car	Feed Cas ATTAINMENT	HAT .	-		The of the states	wheel CO	1
1.5N	103	H	TUTAL (C00	COL 1	TOTAL C	0 100	H	TOTAL D	C01 005	00 000	-	0.05	001-03	003	0.01	001	5.08	CON-36.6	C02541.7 6	00-344 C	100	TPi-Ja.a.	001 0	00)	C01 004	4 C04
1341481806	1.8	1.4 1.4	1.6	1.1	1.8	-	18	1.8	2.6		1 1	-	-	10.00	8.8 8.8	1 4.1	6.6	8.8	. 12	-	44		×	16 11000	45400 16	16.09023 36.0902	*
SWISEBER	1	1		-	-	4	~	-			-	-	-		-	4 4				10			11	11419 44	11 LL 12 199	Same II Shops	#34 11.43454
10033512007	1.1	4. 44	4.4	2.1	13	4.6	2.1 1.2	_	4.6		1	1		10.6		8 10.6	清信	10.0	14.1	-	111		12	2563	44.51019 53.	\$1.00343 \$1.00345	28100115 254
19/12/13/13/06	2.1	21. 4	4.1	1.1	11	77	1.1	17	4.2		1	-	-	9.4					473	-	40	11.9	4	89048	32 04740 46	A0244 46.94244	288 46.99348
C101151/017	1.6	1.1.23		19	11		1. 1. 1.	1.5			1	1	-	1.6	5.5	10.00		5.6	1.8	411	11		9	45 (13) 25	01464 30	4139-00 \$155a-	11/0.06 613
1001351/051	1.8	1.8 1.3		1.0	1.8	14	1.1	18	16		*	-	-	7.6	B 7.8	10 2.00	7.8	2.8	114	711	10.4	10.4	14.6 10	100 179649	CADING IN	1948 C 1968 C	10048 St. 718.
129/15/18/18/	1.8	10 31	3.6		1.8	3.6		1.1	16		-		-	5.8	1 A.0	4 5.4	45	5.6	-	410	3		11 12	13180 ett	24 10.957	12.33061 1.1.18061 1.1	1001 32 23061
CONTRACTOR -	11	22 4	4.4	2.1	2.1	4.4	2.8 2.2	2.3			+	+	-					12	101	111	2		10 10	1 815	201 M 57	57.5189 3.7.5188	100 17.51 Mil
151/151/1019	1	2		2	1		1				-	-	-	44	44 44	44	46	Ĩ	-	-	4.4		10. 10	INCLU AL	at \$1019 16	04071 III 12040	0.071 166 09603
DVINHURD)	11	4 12	~	2.1	21	4.2	2.1 2.1	2.1	4.2		-	-	-					L	13.0		IN	10.1	101 40	24812	26.11.276 49.	49.24612 49.2481	R1/ 49.3461
Div INSTRUCT	11	12 23		1.1	11	2.6	1 11		2.6			+	-	16	6 1.6	10 10	3.6	3.61	1.0	1.14	4.9		11 10	18045	21 21080 12	72 18045 12 18041 22	045 22 1804
INDRESS	87	1.0 1.0		1.8	1.6	3.6	1.0				1	-	-	-				1.0		114		H	=	11 0110	10077 IA	POPULATING REPORTS	454 11 81428
CONTRACTOR OF		2		1	1			-			1	+	-						=	11	=		18	11118	33.82709 41	NA18 41.1118	118 41.15.038
TSA INTERNA	53	2.6 14	1.6	17	17	4.6	1 12				1	.1	-	6.4		4.4		6.6	1.8	12.8	1.8		11 18	46417 NY	A010 16	46417 34.4	1008.00 11866.00
ISVISION	1			1	-			1			+	+	-	P.A.	21 K3	12 12	2.2	1.1	10.7	119	10.2	in T	64.7 IB	14546 377.	10872 M	IA THE AND IS THE THE MAN	第二十二十二
SV/M006	1.3	1.5	-	1.5	11	-	1.1	10	-		-	-	-	1	61 1A	1.6		9.6	11.1	144	18.1		11 114	100 10000	YALDOL #7	04/09/11 (04/04)	2003/12 [00
DW1540000	-	4 1		-	1							1	-		10.0	1.0		1	11.4	11.4	12.4		12.4 161	11454	311.58622 46	46.61654 46.01654	654 40 S1054
13v1665409	11	11 41	4.6	1.1	4.6	4.6	13 1	3.8			+	-	1	1.8	1 18	1.4	2.8	1.8	11.1	13.8	11.1		10 11	72882 40	TA CONS	41.77912 41.7793	43.7 AL 7.7%E
INVINCE ADD.	2.5	43 44	1.1	2.1	11	-	11 3	2.1.	4.2		1	1	-	*	ĺ				-	11.6	111	111	10.1 42	5116	40.35608 43	ABL2 42 4813	111 41.4812
111/1051409	4	2 4	-		-	-	~				+	-	-	8.4	4.4	4.4	14	8.4	11.4		11.4		11.4 62	61734	14.8368. 43.	ALTIN ALTIN JA	334
			-																10.00	12.24	14.44	10.00			ALL PROPERTY AND	The set way in the set way	100000 JUL 1000

4. -2

PRINCIPAL SIET., TUMAKURU

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

1.01	THE WAY AND A	1.
1 31	BIFCT	1 1 1 1

TESTING AND COMMISSION SUBJECT CODE

15EE725

COURSE OUTCOME

Understand the process of commissioning.	_
Prepare the steps of various maintenance methods/techniques.	
Suggest the trouble shooting methods to improve life of electrical equipment.	
Perform requird testing procedure for different equipment using proper tools and methods.	
Perform requird testing procedure for different equipment using proper tools and methods.	
	Prepare the steps of various maintenance methods/techniques. Suggest the trouble shooting methods to improve life of electrical equipment. Perform requird testing procedure for different equipment using proper tools and methods.

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G. I Raus Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology - TUMKUR-572108.

PRINCIPAL SIET., TUMAKURU

COLLEGE		SHR	IDEVI	INSTI	TUTE	OFE	NGIN	EERIN	G & T	ECHN	DLOGY	1
FACULTY	NAM	IE	UMA I	BAI							1	
BRAN	СН		I	EEE		А	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	IV		SECTIO	N		EEE	
SUBJECT		TEST	ING A	ND CO	OMISS	SION		SUBJE	стс	DDE	15EE	725
CO & PO M	APPE	NG						1.00			- The	
and the second	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ALC: N	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	3	1	1	0	3	1	3	1
CO2	3	3	3	3	1	2	1	0	2	1	2	1
CO3	3	3	3	2	2	2	L.	0	2	1	2	T
CO4	3	3	3	3	2	2	1	0	1	1	2	1
C05	3	3	3	3	2	2	E	0	1	1	2	1
AVERAGE	3	3	3	2.6	2	1.8	1	0	1.8	1	2.2	1
	3			1	-	OVE	RAL	L MAP	PING	OF SUE	JECT	1.86

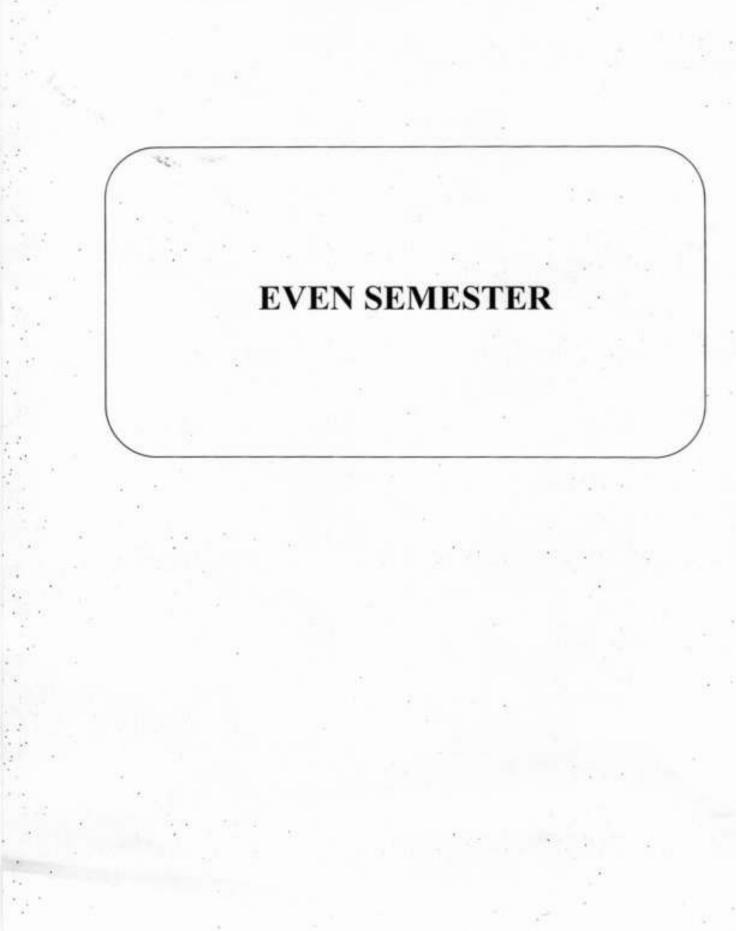
	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	40.57	1.21	1.21	1.21	1.05	0.81	0.73	0.40	0	0.73	0.40	0.89	0.40
CO2	39.14	1.17	1.17	1.17	1.01	0.78	0.70	0.39	0	0.70	0.39	0.86	0.39
CO3	40.73	1.22	1.22	1.22	1.06	0.81	0.73	0.40	0	0.73	0.40	0.90	0.40
CO4	40.73	1.22	1.22	1.22	1.06	0.81	0.73	0.40	0	0.73	0.40	0.90	0.40
CO5	40.73	1.22	1.22	1.22	1.06	0.81	0.73	0.40	0	0.73	0.40	0.90	0.40
AVERAGE	40.38	1.21	1.21	1.21	1.04	0.80	0.72	0.39	0	0.72	0.39	0.89	0.39
								FIN	AL AT	TAINM	MENT L	EVEL	0.74

G u R Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572108

ŧω DEL UNHOURU Ň

The state of the s		A NUMBER OF											STATE NA	NAME UNKNOW	100					111	The second second second second second second second second second second second second second second second se		-			1000		
Academic year		2018-15	N/M		+	-	Total .	Total strength		2	and the second	Subject		TINUNG.	TEXTING AND COMMISSION	AREADON .		4	Subject Code	-	154,8725							
	1.4.1	1A TEST IOMO		AA TEST 2029	1 21859		IA TEST ALSNE	194514	-	AN	ASSIGNEMENT	1/001265	NI)	-		SUX MARKSON	10475 MI			Teta	stat Cas ATTA	ADVANCAT			No.	% of redwidual CO		
USN	001	CO2 TOYAL	L C01	1 001	U TOTA		C04 CC	CO5 1 101	D TVLO	001	C01 C01	-	04 10	COS COS	CO1=62 CO3	10 000	4 C04	1 000	6. C01+36	N.6 CU2-33.7	11 CO3-36	COP-26.1	COM-DAA	COL	C00	0.01	101	609
194140306	11	-	+		-	ŀ			4.2	-	ŀ	-							1.			113	115	30 75186	46,2908	50.75186 S	50,73388.3	94,75,188
1001961A01	17	+	-	17	42	ŀ		21 4	4.2	-	-	F			10.4				10.4 13.5	114	+	185	13.9	501751.06	51,43,005	20.75108	5012210013	90.75188
INV1568001	75	25 25	25	-	-	ŀ	19. 2	2.0 8		-	-					100	12.21	12.2		ŀ	1911	19.1	19.7	99,01256	46.89427	99.42256	98102294	10.02254
15V1565508	2.5		-	17		ŀ		2.5 4.6		-	-	Ē			10.00			N.R.	1.8.1		+	1.0.1	110	49.34812	52,81899	43,24812	49.24812 4	49.2481.
1941545012	1	2 4	1	-		-		-		-	-	F		-				12.2	11.1 10.2		-	19.2	19.2	57.14.2066	36.795,25	57.14,266.5	5/ 14286 5	57.34366
E3w(545613	1.4		1.8	14	16				14	-	-						1.4	11	7.4 10.2	10.4	10.1	14.2	16.2	38,345,465	30,86053	18.345.86	100 3 05 000 1	36.34360
13v1546015	1.1	21 4.2	11	11	4.1			21 4.2	-	-	-	-	-		5.8	1.1	1.1	5.6	5.8 8.9	14.6	8.9	-	4.8	33.45,605	49.25826	33.45465.1	13.45465	13.45865
T3V156E017	1.5	25 5	3.5	25						_	-	-		-	13.4	11.4		11.4	11.41 14.41	16.2	-	14.10	14.9	16:01504	42.1305	56.0150A	100110-05	54.4256
ENTREPTS -	15	25 5	- 15	25	-			2.6 . 8		-	-						8.2	8.2	1.11 1.11	11.4	14.1	16.9	-16.7	41.00436	2143305	43, 388456 4	43, 98456.4	43.9849
LW156EDU0	15	25 25	2.5	25			2.6 2.4	2.5		_	-	-		-				13.4	11.4 14.9	18.4	14.4	10.4	14.91	36.01506	MADNER!	54.0130A	36-01504	56.02504
ENTSKED14	1.6	1.6 1.2	18	1.6	1			1.6 8.	-	-	1						12.6	12.6	12.61 19.2			14.2	19.2	10.14186	44,2908	5.7.14286 1	12 14186	1428
CIMINERIA:	1.8	-	1.6	1.6	14			1.6 1.6			1						11.4	11.4	11.47 14.2	153	-	14.2	142	31.00346	45 30386	S.L. 585461 5	53.38546.1	53,33346
ISWIGHER !!	1.8	1.8 3.8	1.8		3.6		1. 1.	1.6 1.6		-	1	-			10.6	10.4			12.6 13.4	14.6	13.4	6.64	13.4	144419-05	40,230	10.37994	10,379,94	10.175.64
DWISEPERS.	2.8	23 46	2.1	57.	4.6			2.5 4.6		_	1				11	11	11	11	11 14.6			6.63	11.5	54.7594	41.54901	98.7594	18.7994	1000
ISWINERS!	2.8	23 42	11	23		2 23		1 42	-	-	1				1.4	8.4	14	1.4	8.41 14.6	13.5	11.5	6.03	11.5	41.23306	40.94555	43.23306 4	41,215,800 4	41.2380
LIVING RUNN	1.1	2.3 4.6	2.1	23	4.6		8.8 2.1	-		-	1 1	-		-	6.6	8.6	110	8.6	8.0 0.9	10.1	11.4	611	113	44.73666	40.94955	44.73984	44.73884	44.7305
LINEAR BUT	2.1	2.2 4.2	11	23		2 21			~	-	*	-		-	6.2		8.2	8.2	8.2 11.3	10.8	-	6.43	11.3	42.4812	46, 889477	42.4812	42,4812	42,481.2
15V 1611.43M	2.8	2.3 4.6	10	62	4.6			1 44	Ļ	_	-	-			10.8	10.6	10.6	10.6	10.41 14.14	114	114	103	183	53,25664	52,23952	1 MASSERS	MR557.25	57.15564
1SV16815405	1.1	23 46	23	11			2.8 2.	2.0 44		-	-	-			12	17	12	12	1.0 10.4		10.1	1.11	1971	57.5388	54.0056R	S7 K188	51-5148	57.5148
15W16615429	15		2.1							-	1	-			12.6			0.01	22.61 16.1	4	10.7	197	16.1	50.52012	17.80415	100000	0012002	-
	-		-		-									-					11.470	11,000	11.435	11.415	11.414	100 100103	dat rr/mi.	AC GINLE	10000	42 5852

Sungetter ?


G. L. R. Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

Thinks Pr

PRINCIPAL SIET., TUMAKURU

COs & POs

2018-19

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF EEE

SUBJECT POWER GENERATION ECONOMICS

SUBJECT CODE

17EE42

2018

COURSE OUTCOME

- CO1. Describe the working of hydroelectric, steam, nuclear power plants and state functions of major equipment of the power plants.
- CO2. Classify various substations and explain the functions of major equipments in substations.
- CO3. Explain the types of grounding and its importance
- CO4. Infer the economic aspects of power system operation and its effects

CO5. Explain the importance of power factor improvement,

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G. H. R. Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL

SIET., TUMAKURU

COLLEGE		SHR	DEVI	INST	TUTE	OFE	NGIN	EERIN	G & T	ECHNO	DLOGY	0
FACULTY	NAM	E	MRS. S	SHWE	THA	ГМ						
BRAN	СН		I	EEE		A	CAD	EMIC Y	EAR		2018-	2019
COURSE	B.I	ε	SEM	ESTE	R	IV		SECTIO	N			
SUBJECT	POW	ER G	ENER	ATION	NECO	NOM	ics	SUBJE	ст со	DDE	1768	42
CO & PO M	APPIN	G					2					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3 .	3	2			2	2	1	1	1		1
CO2	2	2	2			2	1	1	1	1		1
CO3	3	2	2			2	2	1	1	1	1	1
CO4	2	2	2			2	2	1	1	1		1
CO5	3	2	2		-	2	1	1	1	1		1
AVERAGE	2.6	2.2	2			2	1.6	í	1	1		1
					The second	OVE	RAL	L MAP	PING	OF SUI	BJECT	1.6

	CO%	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
- CO1	48.49	1.45	1.45	0.97			0.97	0.97	0.48	0.48	0.48		0.48
CO2	47.02	0.94	0.94	0.94			0.94	0.47	0.47	0.47	0.47		0.47
CO3	51.25	1.54	1.03	1.03			1.03	1.03	0.51	0.51	0.51		0.51
CO4	47.78	0.96	0.96	0.96			0.96	0.96	0.48	0.48	0.48		0.48
CO5	48.68	1.46	0.97	0.97			0.97	0.49	0.49	0.49	0.49		0.49
AVERAGE	48.644	1.270	1.070	0.973			0.973	0.781	0.486	0.486	0.486		0.486
in the second	120	1	- A line		1144		- Carro	FIN	ALAT	TAIN	MENT L	EVEL	0.7792

G. G. R Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMIKUR-572106.

In

PRINCIPAL SIET., TUMAKURU.

Academic year	30	8-19		SEM	40		1	STUD	ENTS-14	-	(C	Red	Gert .	Pum	r Gene	ration d	& Econ	omics	Subje	et Cole	178	8.43			-			1	1	
SEMERY	IA	TEAT IO	innes .	14	TENT 20	INNE	1.4	TEST A	20MB		SSIGNE	MENT / C	CI210 9	0	1	581	MARK	Salation			Total Co	ATTA	INMENT			5.0	Indvidu	600		SEE TO
USN	.001	COT	TOTAL	C02	CD3	TOTAL.	C04	COS	TOTAL.	COL	.C01	C03	C04	C05	COI	0.02	C03	C04	CON	COI-1	4	1000-0	4 CO1-3	4 1	CO1	C02	C03	. CO4	C05	60M
15V15EE029	7	6	13 .	6	6	12	7	7	14	2	2	2	2	2	3.6	3.6	3.6	3.6	3.6	13	18	6	12	19	43.4	40.0	19.3	40.0	64.1	18
15V15EE031	8	7	15	8	7	15	10	5	15	2	2	2	2	2	6	6	6	6	6	16	15		15	21	59.3	55.6	66.7	55.6	24.1	30
15V17EE001	5	10	15	7	- 8	15		7	15	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	12	15	7	17	21	43.7	54.8	\$6.7	62.2	23.9	24
15V17EE002	10	6	16	10	6	16	9	7	16	2	2	2	2	2	4,4	4,4	4.4	4.4	4,4	16	12	6	12	23	60.7	45.9	53.3	45:9	26.9	22
15V17EE003	11	6	17	9	8	17	10	7	17	2	2	2	2	2	5.4	5.4	5.4	5.4	5.4	18	15	7	13	23	68.1	57.0	61.7	49.6	26.9	27
15V17EE004	15	10	25	16	9	25	13	12	25	2	2	2	2	2	8.8	8.8	8.8	8.8	8.8	26	20	11	21	39	95.6	75.3	90.0	77.0	44.6	44
15V17EE005	15	13	28	14	14	28	13	15	-28	2	2	2	2	2	7.8	7.8	7.8	7.8	7.8	25	24	10	23	39	91.9	88.1	81.7	84.4	44.6	39
15V17EE007	. 6	4	12	7	5	12	8	4	12	2	2	2	2	2	4.2	4.2	4.2	4.Z	4.2	14	11	6	10	17	52.6	41.5	\$1.7	37.8	19.8	21
15V17EE008	10	10	20	9	11	20	10	10	20	2	2	2	2	2	5.4	5.4	5.4	5.4	5.4	17	18	7	17	26	64.4	68.1	61.7	64,4	30.3	27
15V17EE009	11	10	21	12	.9	21	9	12	21	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	19	17	8	18	32	71.9	64.4	70.0	68.1	37.2	32
15V176E010	10	9	19	12	7	19	10	9	19	2	2	2	2	2	7.4	7.4	7.4	7.4	7.4	19	16	9	18	30	71.9	60.7	78.3	68.1	34.9	37
15V17EE011	6	5	31	5	6	11	4	7	11	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	12	12	6	11	18	45.2	45.2	51.7	41.5	20.9	21
15V18EE400	11	12	.23	10	13	23	9	14	23	2	2	2	.2	2	6.4	6.4	6.4	5.4	6.4	19	21	8	20	. 32	71.5	79.3	70.0	75.6	37.2	32
15V18EE401		7	15	10	5	15	7		15	2	2	2	2	2	6	6	6	6	6	16	13	8	15	26	59.3	48.1	66.7	55.6	29.9	30
15V18EE402	10	8	18	11	7	18	10	.8	18	2	2	2	2	2	5.8	5.8	. 5.8	5.8	5.8	18	15	8	16	27	65.9	54.8	65.0	58.5	30.8	29
15V18EE403	11	10	21	10	11	21	9	12	21	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	18	18	7	17	29	65.9	65.9	56.7	62.2	33.1	24
AVERAGE	-	-	-	-	-				-		-	-	-	-	-	-	-	-	-	-	1.1	-		-	64.5	58.9	62.6	59.2	33.1	-

G. H Rome

STAFF

PRINCIPALS dir. Linto . .

PRINCIPAL SIET., TUMAKURU

 \mathbf{r}_{1}

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-672106.

SIET., TUM

 c^{\prime}

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF EEE

SUBJECT

TRANSMISSION&DISTRIBUTION SUBJECT CODE

17EE43

2018-17

COURSE OUTCOME

CO1. Explain the concepts of various methods of generation of power.

CO2. Explain the importance of HVAC, EHVAC, UHVAC and HVDC transmission.

CO3. Design and analyze overhead transmission system for a given voltage level.

CO4. Calculate the parameters of the transmission line for different configurations and assess the performance offline.

CO5. Explain the use of underground cables and evaluate different types of distribution systems.

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G - H R Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL

SIEL, TUMAKURU

COLLEGE

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

	SHRI	DEVI	INSTI	TUTE	OFE	GIN	EERIN	G&T	ECHNO	DLOGY	
NAM	E I	MRS. S	SHWE	THA	ГМ				2		
СН		I	EEE		А	CADI	EMIC Y	EAR		2018	-19
B.1	E	SEM	ESTE	R	IV	s	ECTIO	N		5) 12	
TR	ANSM	ussio	N&DI	STRI	BUTIO	N	SUBJE	ст со	DDE	17EE	43
APPIN	G						15				
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12
2	3		2	1	2	1	1				1
2	3		2	1	2	1	1		316		1
2	3		2	2	2	1	1	+		·	1
2	3		2	2	2	1	1				1
2	3		2	1	2	1	1			-	1
2	3		2	1.4	2	1	1		*		1
	CH B.J TR APPIN PO1 2 2 2 2 2 2 2 2	NAME 1 CH B.E TRANS APPIN 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	MRS. SMRS. SCHMRS. SCHSEMTRANSTOAPPINGPO1 $PO2$ $PO3$ 232232232232232232232232	MRS. SHWEMRS. SHWEEEEB.ESEMESTEDTRANSUISSION&DISAPPINGPO1PO2PO3PO42322232223222322232223222322	MRS. SHWETHACHEEEEBESEMESTERTRANSION&DISTRIAPPING2321232123212322232223212321232123212321	MRS. SHWETHA T MCHEEEAB.ESEMESTERIVTRANSTON&DISTRUTIOAPPINGPO1PO2PO3PO4PO5PO62321223222232222321223212232123212	MRS. SHWETHA T M CH EEE ACADI B.E SEMESTER IV S TRANSION&DISTRIBUTION PO1 PO2 PO3 PO4 PO5 PO6 PO7 2 3 2 1 2 1 PO1 PO2 PO3 PO4 PO5 PO6 PO7 2 3 2 1 2 1 2 1 2 3 2 2 2 1 2 1 2 3 2 2 1 2 1 2 1 2 2 2 2 2 2	MRS. SHWETHA T M CH EEE ACADEMIC Y B.E SEMESTER IV SECTION TRANSMISSION&DISTRIBUTION SUBJE PO1 PO2 PO4 PO5 PO6 PO7 PO8 2 3 2 1 2 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 2 3 2 1 2 1 <t< td=""><td>MRS. SHWETHA T M CH EEE ACADEMIC YEAR B.E SEMESTER IV SECTION TRANSMISSION&DISTRIBUTION SUBJECT COLSPan APPING 2 3 2 1 2 1 1 2 3 2 1 2 1 1 1 2 3 2 2 2 1 1 1 1 2 3 2 2 2 1</td><td>MRS. SHWETHA T M CH EEE ACAJEMIC YEAR B.E SEMESTER IV SECTION TRANSMISSION&DISTRIBUTION SUBJECT CODE APPING P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 2 3 2 1 2 1 1 2 3 2 2 2 1 1 2 3 2 2 2 1 1 2 3 2 1 2 1 1 2 3 2 1 2 1 1 </td><td>CH EEE ACADEMIC YEAR 2018 B.E SEMESTER IV SECTION 1766 TRANSMISSION&DISTRIBUTION SUBJECT CODE 1766 APPING 2 3 2 1 2 1 1 2 3 2 1 2 1 1 2 3 2 1 2 1 1 2 3 2 1 2 1 1 2 3 2 1 2 1 1 2 3 2 1 2 1 <t< td=""></t<></td></t<>	MRS. SHWETHA T M CH EEE ACADEMIC YEAR B.E SEMESTER IV SECTION TRANSMISSION&DISTRIBUTION SUBJECT COLSPan APPING 2 3 2 1 2 1 1 2 3 2 1 2 1 1 1 2 3 2 2 2 1 1 1 1 2 3 2 2 2 1	MRS. SHWETHA T M CH EEE ACAJEMIC YEAR B.E SEMESTER IV SECTION TRANSMISSION&DISTRIBUTION SUBJECT CODE APPING P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 2 3 2 1 2 1 1 2 3 2 2 2 1 1 2 3 2 2 2 1 1 2 3 2 1 2 1 1 2 3 2 1 2 1 1	CH EEE ACADEMIC YEAR 2018 B.E SEMESTER IV SECTION 1766 TRANSMISSION&DISTRIBUTION SUBJECT CODE 1766 APPING 2 3 2 1 2 1 1 2 3 2 1 2 1 1 2 3 2 1 2 1 1 2 3 2 1 2 1 1 2 3 2 1 2 1 1 2 3 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""></t<>

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
CO1	51.1	1.022	1.533		1.022	0.511	1.022	0.511	0.511				0.511
CO2	46.7	0.934	1.401		0.934	0.467	0.934	0.467	0.467				0.467
CO3	49.4	0.988	1.482		0.988	0.988	0.988	0.494	0.494	1			0.494
CO4	47.5	0.95	1.425		0.95	0.95	0.95	0.475	0.475				0.475
CO5	47.1	0.942	1.413	1.353	0.942	0.471	0.942	0.471	0.471	4			0.471
AVERAGE	48.36	0.9672	1.4508		0.9672	0.6774	0.9672	0.4836	0.4836				0.4836
	Shirt	-	111-121	No.			-	FIN	AL AT	TAINN	MENT I	EVEL	0.810

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106,

PRINCIPAL

alkalant	Tunal shaderey	TADOLAL	10/10/10/1011	DIMUNITARI 100	1001081401	Deligtadt	1100174011	60015CPS1	TAVI NUMBER	BORDELLE AVE	TWO WAYNESS	90013LTANT	100010.0001	0003474431	0003W1+V1	1003003000	1003365441	APRIL POLICE	MM	2014 10 1018
101025	16	136	4.8			10		11	12	11		11	14	11	- 10	ų			103	
1110	16	146		10	1	-				10		16	-	II					202	14,13317-1
503141		200	15	14		10		10	12	1	1			.T.	12.	jii.	.0	=	TUTAL	
10.0621				11														-	100	
\$3125	14	149	11	1		80		00	в	10		15		10	15	U.			2004	0.1011.5
10.175	14	016		12	at	12	11	2	20	10	c	3	¥	11	1		=		TUTAL I	
9,5425	14	111		10	1	88		4	10	11		-	-			_			1004	
111	14	14	11	10		Į		NO.	=	1		14	-	111		-			103	11 11 11 11 1
18,8125	-	N.	25		-	23	10	17	W.	11	=		2	=	1	H.	14	10	Twank	
			-	-	-	-		4	-	-	Ļ	1	L	-	Ļ	-	-		103	
-	8		~	Ļ	-	~					_				-		_	-	1004	
Γ	H.		-	-			_	2.0	_				-	_	-	-	_	~	100	
Γ	-		2	~		~	~	~			-		Ļ		-		4	1	1004	Panets .
	16	1			_	~		~		-		-	-	-	2	~	Ļ	~	1005	
-	¥	1	10	la	16	8	ti ti	10		10	=	10		00		10		10	Teach.	
	Ŧ																		1001	
2	1	x	1	1	5	2.4	5	1	2	1	5	*	1	à		*	5	2	PD5	
4.15	#	4	5	5	1.0	24	4.6	110	2	4.1	-	-	-	-	-	-	2	2	103	105-78.0.2
10		×	1.4	5	1.8	2.4	4.6	7.8	27	4.4	2	2	5	-		:	t	5	004	VIDE BIDE DATE
4.75	16	*	14	5	14	2.4	4.5	18	t,	4.6	£		5			4.4	4.7	•	005	
479	14	7	1.4	4	1.1	24	4	2	5	4.4	•1	-	1	\$	4.0	-	11	12	1025	-
10.871	18	2	11.4	14.1	R bt	12.4	32.6	1.1	147	141	E	¥	114	16.4	11.1	15.4	0.2	123		
VCD 41	#	144	17.6	17.0	11.8	144	111	14.4	140	1941	11.01	11	114	18.4	12.8	14.4	1.01	111	1004	TN101
29.65		00	11.1	10	111	11.4	110	1.10	10	197.0	10.	NK.	14.4	. 16.4	34.6	314	RAC.	1.0	-	
	-	1	15.4	110	8.44	14.4	11.6	12.8	6.01	14.4	e	1	10.4	16.3	11.1	16.1	C/II	124	005	
NL1	18	UR1	14.1	4	14.5	42.4	10.	613	115	11.8	10	115	77.8	1.11	H.T	111	819	10.5		
#.1	14	1.04	1.55	45.4	43.5	N.N.	1.44	10.25	17.6	48.8	12.4	WOM.	6.09	144	Texts.	1 44	18.8	44	00 1001	
614	-	1141	2.14	5.10	8.6	48.2	1.19	10.1	140	111	10	. 64.)	19	146	114	1.00	44.7		000 000	present.
47.5	-	1766	1.10	0.11	1.1	7.02	10.7	100	4	13.0	110	111	447	110	110	111	6.18	110	004	
1.04	14	6241	L0	-	101	-17.4	14.1	141	No.	111	1.0	14.1	11	14.1	11.0	-	10.4	11.9		IJ

NOTTING OWN DESIGN

G. 4 Rome

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-672108.

ì

Kennin Inmethe

PRINCIPAL SIET. TUMAKURU.

DEPARTMENT OF EEE

SUBJECT	ELECTRIC MOTORS	SUBJECT CODE	17EE44	

COURSE OUTCOME

COI	Explain the construction, operation and classification of DC Motor,
30200	AC motor and Special purpose motors
CO2	Describe the performance characteristics & applications of Electric motors.
CO3	Demonstrate and explain the methods of testing of DC machines and determine losses and Efficiency
CO4	Control the speed of DC motor and induction motor.
C05	Explain the starting methods, equivalent circuit and phasor diagrams, torque angle, effect of change in excitation and change in load, hunting and damping of synchronous motors

PROGRAM OUTCOME

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Head of the Department Electrical & Electronics Engineering Shidevi Institute of Engineering & Technology TUMKUR-572109.

DI-MACIPAL SILT I UMAKURU

COLLEGE		SHRI	DEVI	INSTI	TUTE	OFE	NGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	E	UMAB	AI				14				
BRAN	СН		1	EEE		A	CAD	EMIC Y	EAR		2018-	2019
COURSE	B.1	E	SEM	ESTE	R	IV		SECTIO	N	÷.,	-20	
SUBJECT		EI	ECTR	IC MO	OTOR	s		SUBJE	ст со	DDE	17E8	44
CO & PO M	APPIN	NG					. *		1			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	2						1
CO2	3	2	2	2	2	2				4	-	1
CO3	3	2	3	2	2	2						1
CO4	- 3	2	2	. 2	2	2		-				1
CO5	3	2	2	2	2	2			1			2
AVERAGE	3	2	2.2	2	2	2				-		1.2
不再改进	ER 2	1			-	OVI	RAL	L MAP	PING	OF SUI	BJECT	2.05

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12
COI	47.4	1.42	0.94	0.94	0.94	0.94	0.94						0.47
CO2	45.9	1.37	0.91	0.91	0.91	0.91	0.91						0.45
CO3	50.1	1.5	1.00	1.5	1.00	1.00	1.00						0.50
CO4	47.1	1.41	0.94	0.94	0.94	0.94	0.94						0.47
CO5	47.6	1.42	0.95	0.95	0.95	0.95	0.95						0.47
AVERAGE	47.62	1.42	0.93	0.95	0.93	0.93	0.93						0.47
	1	-			1257		-	FINA	AL AT	TAIN	MENTI	EVEL	0.937

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology

PRINCIPAL SIET., TUMAKURU

SEMI V, EEE	NSU	15v17EE002	15V17EE004	15v1768005	18V17EE009	15v1766010	15v18EE400	19v18EE402	1sv18EE403	TOTAL	Total studen	Average
-	103	1	11	1	~		-	+	11	8	-	11
IA TE	002		119							-	8	
1.16	101											
-	ALCO		8									
5	03 00	14	12	11	10	7	6	10	9	80		
TEST .	04		14	18	12	14	15	r,	16	105		13.13
-	TOTA	18	26	29	22	21	24	20	25	185		1.62
	004	12	14	10	7	8	12	13	14	90	8	11
2 10	005	12	14	20	17	37	14			112		14
1.3	TOT		28									25.3
1	ALCO.	b		-	*	S.	-	N		2	00	iar.
l	1 00	N	2	N	N	2	~	N	~	16	80	N
2	02 0	N	2	2	N	~	~	r)	24	16	- 10	N
NENI	03 60	~	N	N	2	N	2	N	N	16	m	20
10101	2	~	2	~	2	2	~	*	~	16	00	~
	605	2	2	~	~	2	N	Ň	2	16	-	2
	VI01	ö	to	to	io	to	10	5	t	8	66	5
ľ	t03	5.4	8.1	1	5.4	5.4	*	t	6.6	46.3		5.79
	002											5.78
	0	54	8.1	7	5.4	5.4	4.2	4.2	6.6	-	60	575
335	0300	UR.	00	7	ýn ve	SI I	4	4	7 6	46 46	8	5 5
	4 00	4	1	2			4.2		1	1	8	5 61
	4.9	5.4	8.1	4	5.4	5.4	4.2	4,2	6.6	6.3	-	3
	OTAL	27	4	35	27	27	21	21	33	232		29
	CO1	1	2		-		-	-		14		18.5
	(0)	19.4	1	15	15.4	16.4	19.2	8.2	19.6	8.3	96	558
ŀ	22	16	29.1		25	21	21	15	18.6	176.3		22.037
	603	4	14	0	4	*	2	2	9	2	00	54
INIO1	9	2	22.1		13	14	15	1	10	142		17.7875
F	COM	4	.1	õ	×	4	4	14	9	1	-00	
	*	15	24.1		14	15	18.2	tt	22	152.3		19.0375
	005	4	-	5	4	4	2	5	5	6	- 10	-
	25	19.	24.1	23	24.4	24	20	15	17.6	174.3		21.7875
r	1001						~			3	8	
		0,669	0.728	0.655	0.531	0.566	0.662	0.628	0.676	11379		63.922
	602									6.0	-	
		0.566	1.003	1.000	0.876	0.738	0.731	0.524	0.641	6.07931		75,991
BEJANY	CO3						***			4.9		5
aller		0,736	0.762	0.690	0.600	0,497	0.524	0,490	0.607	06890		61.336
	004									3.4		
		0.441	0.548	0,432	0.327	0.350	0.414	0.436	0.514	6136	-	43.267
E	COS					-	0.69		0.60	010.9		75.12
	100.00				0.84	0.84	100	100	100	122	1.1	100

2018-19

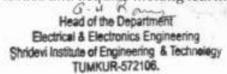
EM 17EE44

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

atte 1 BRISICOAL SHIT CHERKURU.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG


SUBJECT	ELECTROMAGNETIC FIELD THEORY	SUBJECT CODE	17EE45
---------	---------------------------------	--------------	--------

COURSE OUTCOME

COUNDER C	/ CTCOME
CO1	Use different coordinate systems, Coulomb's Law and Gauss Law for the evaluation of electric fields produced by different charge configurations.
CO2	Calculate the energy and potential due to a system of charges & Explain the behavior of electric field across a boundary conditions
CO3	Explain the Poisson's, Laplace equations and behavior of steady magnetic fields.
CO4	Explain the behavior of magnetic fields and magnetic materials.
CO5	Asses time varying fields and propagation of waves in different media.

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

PRINCIPAL SIET., TUMAKURU.

COLLEGE		SHR	IDEVI	INSTE	FUTE	OF EN	GIN	EERING	5 & TI	CHNO	LOGY	-
FACULTY	Y NAM	1E	R TEJA	SWIN	1							10
BRAN	NCH		ł	EEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTEI	R	IV	1 5	SECTIO	N		EEE	
SUBJECT	ELE THE		MAGNI	ETIC F	TELD			SUBJE	ст со	DDE	17EI	645
CO & PO M	APPIN	NG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	1	I								2
CO2	2	3	1	1								2
CO3	1	2	1	I.								1
CO4	3	3	1	T								3
CO5	2	3	1	1								2
AVERAGE	2	2.8	1	1					1	2.		2
						OVE	RAL	L MAP	PING	OF SUE	BJECT	1.63
		-			-							

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	60.2	1.20	1.68	0.60	0.60							1	1.20
CO2	58.7	1.17	1.64	0.58	0.58								1.17
CO3	47.7	0.95	1.33	0.47	0.47					-			0.95
CO4	59.3	1.18	1.66	0.59	0.59								1.18
CO5	32.4	0.64	0.90	0.32	0.32								0.64
AVERAGE	51.66	1.02	1.44	0.51	0.51								1.02
			1	1 A A			0-6	FIN	AL AT	TAINM	MENT L	EVEL	0.9

G - LI Roman Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology

PRINCIPAL SIET. TUMAKURU

20000

kradentik year	201	848		NO.	4th	10		BTUD	ENTS-16			34	Gert			EMFT		_	Table	et Colt	178	E-IS					1			-
BEM IV	IA	TENT IL	MINEL.	14	TEST 31	kilds .	14	TEST 3:	Jan Nily		AUGNE	MENT / C	iouzue A	AL		AU	MARK	500 Rt .					INMENT			16.0	Indulted	001		SEE To
ENN	.cos	.x:00	TOTAL	CO1	000	TOTAL	C04	C08	TOTAL	cm.	001	000	. 004	005	000	001	C03	c:04	008	(01-1 9	4	100-0	(CO+-] 7	3	C01	(:00)	c00	001	cos	6054
15V15EE029	7	5	13	10	3	13		5	13	2	2	2	2	2	1.8	1.8	1.8	1.8	1.8	11	19	4	9	19	17.2	62.7	13.1	30.3	64.8	9
15V15EE031	10	10	20	9	11	20	12	8	20	2	2	2	2	2	2.8	2.8	2,8	2.8	2.8	15	16	5	15	22	54.8	58.5	40.0	54.8	25.1	14
15V17EE001	10	8	18	9	9	.18	12	6	18	2	2	2	2	2	0.6	0.6	0.6	0.6	0.6	13	12	- 3	11	18	46.7	43.0	21.7	39.3	20.2	3
15V17EE002	10	13	23	12	11	23	14	9	23	2	2	2	2	2	4.4	4.4	6.4	4.4	4.4	16	17	- 6	19	27	60.7	54.4	53.3	71.9	31.5	22
15V17EE003	11	11	22	10	12	22	12	10	22	2	2	2	2	2	5.6	5.6	5.6	5.6	5.6	19	20		19	28	68.9	72.6	63.3	68.9	31.7	28
15V17EE004	15	15	30	15	15	10	15	15	10	2	2	2	2	2	6.6	6.6	6.6	6.6	6.6	24	24	9	24	39	87.4	87.4	71.7	17A	44.4	33
15V17EE005	15	15	30	15	15	30	15	15	30	2	2	2	2	2	8.2	8.2	8.2	8.2	8.2	25	25	10	25	40	93.3	93.3	85.0	13.3	46.2	41
15V17EE007	10	7	17	12	5	17	9		17	2	2	2	2	2	3.4	3.4	3.4	3.4	3.4	15	10	5	12	25	\$7.0	38.5	45.0	45.9	29.2	17
15V17EE008		10	19	10	9	19	12	7	19	2	2	2	2	2	3.6	3.6	3.6	3.6	3.6	15	15	.6	16	23	54.1	54.1	45.7	-57.8	26.0	18
15V17EE009	10	15	25	15	10	25	14	11	25	.2	2	2	2	2	3.4	3.4	3.4	3.4	3.4	15	15	5	20	31	57.0	57.0	45.0	75.6	36.1	17
15V17EE010.	12	13	25	14	11	25	11	3.2	25	2	2	2	2	2	7,4	7.4	7.4	7.A	7.4	21	20	9	22	35	79.3	75.6	78.3	83.0	40.7	37
15V17EE011	1	5	13	7	6	13	9	4	13	2	2	2	2	2	3.4	3.4	3.4	3.4	3.4	13	11	: 5	10	16	49.6	42.2	45.0	38.5	18.9	17
15V18EE400	10	7	17	9		37	10	7	17	2	2	2	2	1	1	1	1	1	1	13	11	3	10	.19	48.1	40.7	25.0	17.0	21.8	5
15V18EE401	8	8	16	10	8	16	9	7	16	2	2	2	2	2	3.6	3.6	3.6	3.6	3.6	14	12	.6	14	23	50.4	43.0	46.7	50.4	26.0	18
15V18EE402	10	9	19	9	10	19	11		19	2	2	2	2	2	1	1	1	1	1	1.8	13	3	12	20	48.1	48.1	25.0	44.4	23.0	5
15V18EE403	12	12	24	10	34	24	13	11	24	2	2	2	2	2	5	5	5	5	5	19	21	7	19	28	70.4	77.8	58.3	70.4	32.2	25
AVERAGE		-	-		-		-			-		-	-		-			-	-			-	-	-	60.2	58.7	47.7	59.3	32.4	-

STAFF

HOD

G - 4 R mm Head of the Department Electrical & Eléctrónics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL milin PRINCIPAL SIET., TUMAKURU

PRINCIPAL SIET. TUMARU

C.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

SUBJECT	OPERATIONAL AMPLIFIERS AND LINEAR IC'S	SUBJECT CODE	17EE46
---------	---	--------------	--------

COURSE OUTCOME

CO1	Describe the characteristics of ideal and practical operational amplifier.
CO2	Design filters and signal generators using linear ICs.
CO3	Demonstrate the application of Linear ICs as comparators and rectifiers.
CO4	Analyze voltage regulators for given specification using op-amp and IC voltage regulators.
CO5	Summarize the basics of PLL and Timer.

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G. HRANZ Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET. TUMAKURU.

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF E	NGIN	EERIN	G & T	ECHN	DLOGY	(
FACULTY	NAM	IE	NAYA	NA								
BRAN	СН		1	EEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	IV		SECTIO	N		EEE	
SUBJECT	OP	ERAT	IONAI LIN	L AMP EAR IO		RS AN	D	SUBJE	ст со	DDE	17EI	E46
CO & PO M	APPE	NG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
COI	3				2	2						2
CO2	3				2	2						2
CO3	3				2	2						2
CO4	3				2	2						2
CO5	3				2	2				÷		2
AVERAGE	3				2	2			× .	4 ₁₋₁		2
						OVE	RAL	L MAP	PING	OF SUE	BJECT	2.02

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	52.4	1.57				1.04	1.04						1.04
CO2	50.8	1.52				1.01	1.01						1.01
CO3	50.8	1.52				1.01	1.01						1.01
CO4	51.5	1.54				1.03	1.03						1.03
C05	27.3	0.81				0.54	0.54					10	0.54
AVERAGE	46.56	1.39				0.92	0.92						0.92
								FIN	AL AT	TAINN	MENT L	EVEL	1.03

G. H Roman

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

Na the.

PRINCIPAL SIET., TUMAKURU

Academic prot	38	18-19		SIM	40.	-		ATUR	ENTR-U.		1		işant -	0	PAMP	SA LE	NEARJ	er .	Subp	nt Cale	121	36.8								
SEME IV	IA	TINT 16	HING:	- 14	TEST 20	NINE	- U	TEAT &	30Mb		ANGIONE	MENT/G	statio f	ti i		187	EMABL	Selds			Tutol Co	ATTA	OMENT				-	00 1		SEE TO
SIN.	-000	c01	TOTAL	000	-000	TOTAL	604	C05	TOTAL	-001	cat	cos	0.04	cos	001	C01	coa	004	cos	COI+7	4	100-0	CO143	1005-1	001	001	cm	CD4	con	60 M
15V15EE029	6	4	10	5	5	10	5	5	10	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	12	15	6	10	16	42.1	34.5	21.4	35.2	55.9	21
15V15EE031	10	9	19	11	. 8	19	12	7	19	2	2	2	2	2	3.4	3.4	3.4	3.4	3.4	15	13	5	14	23	\$7.0	49.6	45.0	53.3	26.9	17
15V17EE001	5	5	10	6	4	10	4	6	10	2	2	2	2	2	3	3	3	3	3	10	9	5	10	17	37.0	33.3	41.7	37.0	19.5	15
15V17EE002	5	- 5	10	5	5	10	5	5	10	2	2	2	2	2	5.8	5.8	5.8	5.8	5.8	13	13		13	18	47.4	47.4	65.0	47.4	20.5	29
15V17EE003	6	6	12	7	5	12	8	4	12	2	2	2	2	2	4.1	4.8	4.8	4.8	4.8	13	12	7	13	18	47.A	43.7	56.7	47.4	20.5	24
15V17EE004	12	15	27	13	14	27	12	15	27	2	2	3	2	2	6	6	6	6	6	20	22	8	23	36	74.1	81.5	66.7	85.2	41.4	30
15V17EE005	14	15	29	15	14	29	14	15	29	2	2	2	2	2	8		8	8		24	24	10	25	40	88.9	88.9	83.3	92.6	46.0	40
15V17EE007	9	6	15	10	5	15	10	5	15	2	2	2	2	2	3	3	3	3	3	14	10	5	11	20	51.9	37.0	41.7	40.7	23.0	15
15V17EE008	10	10	20	.8	12	20	9	11	20	2	2	2	2	2	2	2	2	2	2	14	16	4	14	23	51.9	59.3	33.3	51.9	26.4	10
15V17EE009	1	7	14	10	4	14	7	7	14	2	2	2	2	2	2	2	2	2	2	11		4	11	21	40.7	29.6	33.3	40.7	24.1	10
15V17EE010	12	12	24	10	14	24	13	11	24	2	2	2	2	2	5.2	5.2	5.2	5.2	5.2	19	21	7	19	28	71.1	78.5	\$0.0	71.1	32,4	26
15V17EE011	3	5	10	5	- 5	2.0	5	5	10	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	11	11	6	11	16	41.5	41.5	\$1.7	41.5	18.6	21
15V18EE400	6	5	11	7	4	11	7	4	11	2	2	2	2	2	5.8	5.8	5.8	5.0	5.8	14	12	8	13	19	51.1	43.7	\$5.0	47.4	21.6	.29
15V18EE401	5	6	11	4	.7	11	5	6	11	2	2	2	2	. 2	2.2	2.2	2.2	2.2	2.2	9	11	4	10	14	34.3	41.5	35.0	37.8	16.3	11
1SV18EE402	7	4	11	5	6	11	5	6	11	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	13	12	6	10	17	48.9	45.2	\$1.7	37.8	19.8	21
1SV18EE403	7		15	7		-15	9	5	15	2	2	2	2	2	5.4	5.4	5.4	5.4	5.4	14	15	1	15	20	\$3.3	57.0	61.7	\$7.0	23,4	27
AVERAGE	-			-			-					-		-	-	-	-	-	-	-	-	-	-	-	52.4	50.8	50.8	51.5	27.3	-

STAFF

1.1.4

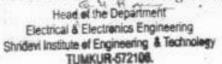
G. Il Same

Randerscipal

PRINCIPAL BIET, TUMAKURU

Head of the Department Electrical & Electronics Engineering Shrillevi Institute of Engineering & Technology TUMKUR-572106.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.


SUBJECT	CONTROL SYSTEM	SUBJECT CODE	15EE61	
	이 같은 것 같은 것이 같은 것은 것은 것을 것 같은 것 같은 것 같은 것 같은 것 같은 것	CONTRACTOR AND AND AND AND ADDRESS OF ADDRESS AND ADDRE ADDRESS AND ADDRESS		

COURSE OUTCOME

J FITTER VI

2.7 C. 2 C. 7 C. 7	701000HL
CO1	Use gauges and transducers to measure pressure, direction and distance.
CO2	Discuss the use of light transducers and other devices used for the measurement of electromagnetic Radiations
CO3	Explain the working of different temperature sensing devices.
CO4	Discuss the principles and applications of audio electrical sensors and transducers used for the measurement of sound
C05	Discuss the use of sensors for the measurement of mass, volume and environmental quantities

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE	-	SHRI	DEVI I	NSTIT	UTE C	OF EN	GINE	ERING	& TE	CHNO	LOGY	
FACULT	Y NAM	E	SOWM	YA								E.
BRA	NCH		I	EEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	VI		SECTIO	N		EEE	
SUBJECT	CONT	ROLS	SYSTEM	4				SUBJE	ст со	DDE	15EI	E61
CO & PO M	APPIN	G								3		
a strange	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	2	2			1	1			1	1
CO2	2	3	2	2	1		1	1			1	1
CO3	3	3	2	2		1		1				1
CO4	2	3	2	2			1	1	1		-1	- 1
CO5	3	2	3	3		1		1			1	1
AVERAGE	2.4	2.8	2.2	2.2	1	1	1	1			1	1
1			-			OVE	RAL	L MAP	PING	OF SUI	BJECT	1.56

CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
38.66	0.93	1.08	0.85	0.85			0.38	0.38			0.38	0.38
34.17	0.82	0.95	0.75	0.75	0.34		0.34	0.34			0.34	0.34
38.66	0.93	1.08	0.85	0.85		0.38		0.38				0.38
38.66	0.93	1.08	0.85	0.85			0.38	0.38			0.38	0.38
38.66	0.93	1.08	0.85	0.85		0.38		0.38			0.38	0.38
37.76	0.91	1.05	0.83	0.83	0.34	0.38	0.36	0.37	1	Se.	0.37	0.37
	38.66 34.17 38.66 38.66 38.66	38.66 0.93 34.17 0.82 38.66 0.93 38.66 0.93 38.66 0.93 38.66 0.93	38.66 0.93 1.08 34.17 0.82 0.95 38.66 0.93 1.08 38.66 0.93 1.08 38.66 0.93 1.08 38.66 0.93 1.08 38.66 0.93 1.08	38.66 0.93 1.08 0.85 34.17 0.82 0.95 0.75 38.66 0.93 1.08 0.85 38.66 0.93 1.08 0.85 38.66 0.93 1.08 0.85 38.66 0.93 1.08 0.85 38.66 0.93 1.08 0.85	38.66 0.93 1.08 0.85 0.85 34.17 0.82 0.95 0.75 0.75 38.66 0.93 1.08 0.85 0.85 38.66 0.93 1.08 0.85 0.85 38.66 0.93 1.08 0.85 0.85 38.66 0.93 1.08 0.85 0.85 38.66 0.93 1.08 0.85 0.85	38.66 0.93 1.08 0.85 0.85 34.17 0.82 0.95 0.75 0.75 0.34 38.66 0.93 1.08 0.85 0.85 0.34 38.66 0.93 1.08 0.85 0.85 0.34 38.66 0.93 1.08 0.85 0.85 0.85 38.66 0.93 1.08 0.85 0.85 0.85	38.66 0.93 1.08 0.85 0.85 0.85 34.17 0.82 0.95 0.75 0.75 0.34 38.66 0.93 1.08 0.85 0.85 0.34 38.66 0.93 1.08 0.85 0.85 0.34 38.66 0.93 1.08 0.85 0.85 0.38 38.66 0.93 1.08 0.85 0.85 0.35 38.66 0.93 1.08 0.85 0.85 0.38	38.66 0.93 1.08 0.85 0.85 0.85 0.38 34.17 0.82 0.95 0.75 0.75 0.34 0.34 38.66 0.93 1.08 0.85 0.85 0.34 0.34 38.66 0.93 1.08 0.85 0.85 0.34 0.34 38.66 0.93 1.08 0.85 0.85 0.85 0.38 38.66 0.93 1.08 0.85 0.85 0.85 0.38 38.66 0.93 1.08 0.85 0.85 0.85 0.38	38.66 0.93 1.08 0.85 0.85 0.38 0.38 34.17 0.82 0.95 0.75 0.75 0.34 0.34 0.34 38.66 0.93 1.08 0.85 0.85 0.34 0.34 0.34 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 38.66 0.93 1.08 0.85 0.85 1.0 0.38 0.38 38.66 0.93 1.08 0.85 0.85 1.0 0.38 0.38 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38	38.66 0.93 1.08 0.85 0.85 0 0.38 0.38 34.17 0.82 0.95 0.75 0.75 0.34 0.34 0.34 0.34 38.66 0.93 1.08 0.85 0.85 0.34 0.38 0.34 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 38.66 0.93 1.08 0.85 0.85 0.85 0.38 0.38 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38	38.66 0.93 1.08 0.85 0.85 0.34 0.38 0.38 34.17 0.82 0.95 0.75 0.34 0.34 0.34 0.34 38.66 0.93 1.08 0.85 0.85 0.34 0.34 0.34 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38	38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 0.38 34.17 0.82 0.95 0.75 0.75 0.34 0.34 0.34 0.34 38.66 0.93 1.08 0.85 0.85 0.38 0.34 0.34 0.34 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 0.38 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 0.38 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 0.38 38.66 0.93 1.08 0.85 0.85 0.38 0.38 0.38 0.38

G. U. R. Head of the Department Electrical & Electronics Engineering Stridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET, TUMAKURU

		100 100			1		ĺ				ĺ			ĺ	Contraction of the local division of the loc	Transient.	ł	Ì	Contraction of the local division of the loc		10000	ł	ł	ŀ	ŀ	ł		ł
	-	1018-13	ř.	SEM .	•			Total WINNIGHT	ALL NO.	-		Settier	Tree I	-	CONTROL SYSTEM	MULLING SALE			Traffjørt Ctabe	take .	128.201						-	
e 12	ATES IN	A TEST (05M)	-	1VI	4A TENY 2059		N I	DATEST MISNE	13461		ASSIGNE	ASSIGNEMENT/ OUT	105 5775.30			TAR.	SAT MARKSON		-		Tutal Cross	(utal Case ATTAENMENT	141			wine.	The reliand we have 000	
(C	001 100	101 101	TOTAL.	001	000	TOTAL.	103	000	TOTAL.	10.3	000	003	0.01	C03	£01+01	003	000	100	000 00	UI-DAA CO	00-33.7 406	03-38-CO	COMPANA CO	100-08-a	100	001	00 00	CO4 CO4
P	1.6	16 1 1.	12	1.6	1.6	12	1.6	1.6	3.2	-	-	-	-	-	7.8	1.4	1.8.1	7.8	7.8	18.4	N'N	10.4		14.4 10	10.09774 291	10.08012 19	0.01 87190.01	#2180.04 PC080.08
1 ^m		21 1 4	17	17	11	77	1.1	11	7	-	-	-	1	-	2.6	3.6	5.6	1	14	8.7	000	1.1	┝	2	106.17	32.04748 12	PUBLIT 31, 100,71	NLTT NJ. 700.71
1	-	1.1 3.	3.6	1.1	- 01	1.6	1.1	1	2.6	-	-	-	-	-	2.6	1.4	5.4	1	16	H	13.4	1.4	H	12	00000	25. MJRL 24	17869'67 1788'S 57	1210-032
1		1.8 3.	X6	1.8	1.0	3.6	1.0	1	3.6	-	-	-	-	-	9.8	11	11	9.8	10	ŀ	114	124		12.6 47.	10,000	34.42136 47.	30AU3 47.30BMJ	1042 47.3684.
r	-			-	1		1	-	+	-	1	-	1	-	-	1	-	-	4		110			11.1	17.59.000 40.	40.79606 17	17.511284 EF.V9396	ADDUC 11 3051
-	1.8	1.8 20	1.6	1.8	1.1	3.6	1.0	-	3.6	1	-	-	1	-	9.6	8.6	11	100	11	-		- 111				18.57567 42	42.85,754 42,46,574	1714 43.30714
1	5	1.1	_	11	13	-	11	11		-	. 1	-	1	-	14	14	1.4	8.4	3.4	H		10.1			40.0734A 23.	73867 40	40.07744 40.07744	1744 40.97744
6	-	2		1	1		-	~		-	1	-	-	-	+	*		*	4		113	- 1	-	18	WALK W	HL. 2017% 26.	ALC: 10 10 10 10 10 10 10 10 10 10 10 10 10	1230 M 123
1	-	2		1.1	1	17	1	-		-		-	-	-	1.2	12	1.1	12	12	101	1.7.1	2		14.2 10	Perform.	\$0.74184 BL	347,461 381,345,66	1566 34.3
M	11	2.3 8.	4.6	4.1	11	4.6	2.9	10	4.6			-	1	-	11.6	11.4	11.0	11.8	11.10	15.1	113	111	1.0.1	15.1 16.	16662	11,23442 14	C.04 11000	14692 54 7469
1	13	1.1		11	1.1		11	1.1		-		-		-	3.6	5.6	5.65	3.6	44	1.1	10.4	-	11	06	45113 36	A60A) 31	#3113 36.4	A-16 6110
1	1.6	14. 1	12	14	1.6	11	1.6	1.6	3.2	1	-	-	1	-	11.4	9.4	6.4	9.4	6.4		114		+	4 33	69269	40.75666 13	11.03459 33.8	13.83455 33.8345
r"		2		~	~		1	-		1	1	-	1	-	3.4	2.4	9.4	14	4.6	12.4		11.4	114	11.4 40	40.61004 14	14.8568 46.	46.61054 46.6	40.03654 40.02654
	-															ľ				A DESCRIPTION OF		THE LOCAL DIVISION OF THE			ALC: NAME OF OCCUPANT OF OCCUPANT	44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

G-V R Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

an water and

2-12-2

Manden apple Sungelle PRINCIPAL SIET. IUMAKURU

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

SUBJECT POWER SYSTEM ANALYSIS 1

SUBJECT CODE

15EE62

COURSE OUTCOME

CO1	Model the power system components & construct per unit impedance diagram of power system.
CO2	Analyze three phase symmetrical faults on power system.
CO3	Compute unbalanced phasor in terms of sequence components and vice versa, also develop sequence networks.
CO4	Analyze various unsymmetrical faults on power system.
CO5	Examine dynamics of synchronous machine and determine the power system stability

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G. H. Ra Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology

TUMKUR-572106.

PRINCIPAL SIET., TUMAKURU

COLLEGE		SHR	DEVI	INSTE	TUTE	OF EN	GIN	EERING	5 & TI	CHNO	LOGY	
FACULT	Y NAM	E	UMA I	BAI								20.
BRAN	NCH		I	EEE		А	CAD	EMIC Y	EAR		2018	-19
COURSE	B.I	E	SEM	ESTE	R	VI	S	ECTIO	0N		EEE	
SUBJECT	POW	ER SY	STEM	ANAL	YSIS	1		SUBJE	стс	ODE	15EI	E62
со & ро м	APPIN	G										
1. Carl	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	3							1			
CO2	3	3										
CO3	2	3	1									
CO4	2	3										
C05	2.5	3		3				1				2
AVERAGE	2.5	3		3								2
	-	-				OVE	RAL	L MAP	PING	OF SUE	BJECT	2.62

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12
C01	36.17	0.90	1.08										
CO2	31.27	0.78	0.93										1
CO3	36.40	0.91	1.09										
CO4	36.40	0.91	1.09										
C05	36.40	0.91	1.09		1.09								0.72
AVERAGE	35.32	0.88	1.05		1.09								0.72
	2.1							FIN	AL AT	TAINM	MENT L	EVEL	0.93

G, U R Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

DATE HAL SI_____URU.

Chevrolation and		And South		in the				1929016	10.00				MA	FF NAME	PRABAL	0.000000	Contractor.		20010	Internation of the		11.9				_			1
Academic year	1.5	2015-19	10.0	SEM				fetal streng	pik.	13	Concession (1997)	Set	hjeit	POW	ER SYSTEP	ANALY:	515 - 1	Charles and	Nakje	et Casle	158	862	Second.	-	1				
SY 32527 0	. 84	TEST 101	SMI	1	A TENT IS	(1)	15	TEST JUS	5413	11225200	ASSIGNE	MENT /4	ULZUS MI	Con 1927	100000	SE	MARKS	861		Sec. And	Total C	as ATTAB	WHENT		Sec. 1	74	d itabwilus	031	1.000
USN	COL	6.00	TOTAL.	CO2	003	TOTAL	0.04	6.034	TUTAL	0.04	6.03	0.03	6.834	6:05	£01+12	C01	C03	6.04	CO1	CO1-36.6	C03+81.1	1103-36.6	C04-35.8	CO3+26.6	003	C03	C03	C04	0.05
EV/14FE001	1.1	1.1	3.6	1.3	1.1	2.6	1.8	3.8	2.6		1	1	- 1	1	9.2	9.2	9.2	9.7	9,2	\$1.8	38.2	31.5	11.3	11.8	43.28308	30.26786	41128368	43-23338	41,2133
15//1466004	14	1.6	1.1	1.6	1.6	1.1	1.6	1.6	3.2	1	1	1	1	1	5.6	5.5	6.6	6.6	6.6	1.2	98.2	9.2	9.2	4.3	34.58647	30.26706	34.58647	34,58047	34.5864
111/1466030	1.1	1.1	22	3.5	3.1	1.1	11	1.1	2.2	1	1	. 1	1	1	6			6	6	8.1	11.8	8.1	8.1	8.1	30.45113	25.01484	30.45118	80.45319	80.4511
EW156E001	1.8	1.8	1.6	1.8	1.8	1.6	1.8	1.6	3.8	1	1	1	1	1	8.6	8.5	8.6	8.6	8.6	11,4	18.4	164	11.4	11.4	42.85714	38.76363	42.85714	42.85714	47.8571
199/15/2004	1.3	2.1	3.4	2.1	3.7	4.2	2.1	2.1	4.2	1	1	1	1	1	8.8	8.5	8.8	8.8	8.8	31.1	12.4	11.9	\$1.9	11.9	41.72987	17.58873	44.73684	44.73684	44 7368
11W156E030	1.6	14	3.2	1.6	1.6	5.7	1.6	1.6	3.2	1	1	1	. 8	1	. 7.4	7.4	7.4	3.4	2.4		9.8	10	10	10	17.56(298)	29.08212	37.59398	37.553998	37.3919
110/1566011	1.1	13	2.6	1.3	3.8	2.6	1.8	1.8	2.8	1	1	1	.1	1	5.8	3.6	5.6	5.6	5.6		38.4	7,8	7,9	7.8	23.69925	30,86053	23.69925	29.69925	23.6992
197329589034	1.6	1.0	8.2	3.6	1.8	8.2	.1.6	1.6	3.2	1	1	1	1	1	6.8	5.8	6.5	5.8	6.8	9.4	84.2	9.4	9,8	.9.4	35.53815	30.26706	15.33835	35.33815	85.1587
139/1568816	3.5	3.5	8	1.5	3.5		1.5	1.5	3	1	1	1	1	1	4	5	6		6	4.5	12.4	8,5	8.5	8.5	31.95489	17.58872	31.95489	21.95489	31.9548
LINVESTEEDUS	2	- 2	4	2	2	4	- 7	2.			1	1	1	1	86	8.6	8.6	8.5	8.5	15.6	114	11.6	11.8	11.6	43.66902	31.45403	43.60902	43,60992	43.60%
LIVEREERS.	1.3	1.8	2.6	1.9	1.1	2.6	1.1	1.3	2.6	1	1	1	1	1	5.6	5.6	5.6	5.6	5.6	1.9	9.4	7.9	7,9	1.9	29.69975	27,89338	29.09925	29.69575	25.6992
L3V1541939	1.1	1.1	11	11	1.1	11	1.1	1.1	2.2	3	1	1	1	1	5.8	5.8	5.8	5.8	5.8	1.9	24.5	7.9	7,9	3.9	29.69925	13-04748	29.69925	29.89925	29.6992
159/15/11039	- 2	2	4	1	1	4	1	1	4	1	1	8	2	1	7.8	7.6	7.8	2.6	7.6	18.6	. 6	28.0	10.8	18,6	78.845467	14.8368	39.84967	28.8496J	75.0496
	1.1.1.1							1											111	9.423077	1057866	9 684615	3.684615	9.658835	36.17648	A151.15	36.40823	36.45637	M. Aria I

Manden Sameth

a fa lla

PRINCIPAL SET., TUMAKURU.

G - L1 R Head of the Department Electrical & Electronics Engineering Shidevi Institute of Engineering & Technology

. . sector

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

SUBJECT	DIGITAL SIGNAL PROCESSING	SUBJECT CODE	15EE63	
CONTRACTOR OF A DATA		120070000000000000000000000000000000000		

COURSE OUTCOME

CO1	Apply DFT and IDFT to perform linear filtering techniques on given sequences to determine the output
CO2	Apply fast and efficient algorithms for computing DFT and inverse DFT of a given sequence
CO3	Design and realize infinite impulse response Butterworth and Chebyshev digital filters using impulse invariant and bilinear transformation techniques
CO4	Develop a digital IIR filter by direct, cascade, parallel, ladder and FIR filter by direct, cascade and linear phase methods of realization.
CO5	Design and realize FIR filters by use of window function and frequency sampling method

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET., TUMAKURU

COLLEGE		SHR	IDEVII	NSTIT	UTE (OF EN	GINE	ERING	& TE	CHNO	LOGY	1
FACULT	Y NAM	E	G H RA	VIKUN	MAR				1 CON			
BRA	NCH		E	EE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.I	3	SEM	ESTER	2	VI		SECTIO	N		EEE	
SUBJECT	DIGIT	AL S	IGNAL I	PROCI	ESSIN	G		SUBJE	ст со	DDE	15EJ	E63
CO & PO M	APPIN	G										
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3										
CO2	3	2	2									
CO3	3	2	2					1				
CO4	3	2	2									1
CO5	2	3						1				
AVERAGE	2.6	2.4	2									
			-	1.1		OVE	RAL	L MAP	PING	OF SUI	BJECT	2.33

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	36.98	0.96	0.88										
CO2	34.28	0.89	0.82	0.68								1	
CO3	36.98	0.96	0.88	0.73									
CO4	36.98	0.96	0.88	0.73									
CO5	36.98	0.96	0.88										
AVERAGE	36.44	0.95	0.86	0.71			100			1	. Aller		

G - LI Repartment Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET., TUMAKURU.

						Nuclear States	1 A				STATE NAME: 19 P. RAW SUBMAN	A RAMA PA ST	INVIAN .	- Williams		A LOUIS AND A LOUIS AND A	A COLORADOR								
	2018-19	N3N		*		Tread wrongth	111	1 10		Suddard	4	WULTAL S	DOUT AL SIGNAL FROM \$551NG	H R SSING	_	Subject	Subject Cade	CATER I	2	-	-				
	LA TEST HISMI.		AA TEST MIN	1111	-	TA TEST MINU	1941		ASNUNYMENT OUT	AT JOURS	THE MIT			SFE MARKSING	K5(80)		1	Tetal Con	Teat Cos ATTAINMENT	1.51			The of indexedual CO	Aut CO	
100 1001	CO1 TOTAL	44 000	103	TVLOL	100	0.00	TOTAL.	103	(0)	CO3 CO	01 01	00 00	COMMENT OF 11	tt (03	1 6/04	609	C01-34.6	C00-31.7 C	05-34.8 C	COMPAN COMPAN CONTRA		CO1 CO1	2 COU	100	003
15V140001 1.V	4.9	1.5	15	-	15	15		-	1	+	-		1.5	4.2	4 2.6	28. 29	11.71	11.2	11.1	11.7	11.7 40.1	43.78496. 33.1691	014 41.56a%	040 43.58426	6 43.99496
15/1401004 1.1	1.1 1.1	1.1	1.5	-	11	1.5		-	1	+		-	4.6	6.8	8.6	6.6 6.6	110	10.6	16	14.2		14.73053 31.45406	A01, 34, 730%	14 1005	34.2105
5v1401010 1.1	22 23	1.1 1.1	11	22	11	11	2.2	-	1		-				-	8 8	81	14.8	1.1	8.2	\$ 1 10.	10.45113 27.2967	987 30.45.11	111 30 45113	3 33.45.11
SV1960001 J	A 5	~	2	•	-	1		-	1	+	-		8.8	3.61	8.6 8.6	8.6 8.6	11.6	13.6	11.6	11.4	11.0 43.1	#1.40002 44 Th4018	000 41 0000	XUL 41-00902	0 43.6090
SV1500000 1.8	18 3.6	4 I.A	18	3.6	1.8	1.8	3.6	-	1		-		8.8	8.8	8.6 8.	8.8 8.8	13.41	13.6	11.6	11.6	11.6 484	45.40902 39.76261	265 41 9000	NU 41, m0902	0 43.60%0
c otoextinat	2 4	2	~		~	-		-	1		1		2.4	7.6	3.4 3.		10.4	12.4	10.4	10.6	10.4 10.1	PALOSUTA B4. PIN.J.	9.25 IN-08774	P114 19-08774	4 39.0975
\$1 110001A01	1.8 9.6	81 I.8		3.6	1.8	1.1	3.6	-	- 1				5.5	3.6	1.6 1.	1.4 5.6	3.6	14.2	3.4	R.4]	A4 3L	307.35.04 30.76776	706 x1.9.1800	112112/1820	5 31.5789
White 2	2 4	~	~	*	~	2		-	1	1	-	-			6.8 6.8		8.9	21.6	1.1	1.8	9.8 16.0	16, 64, 11, 15, 11, 494	12140.00 988	111 36 34 211	1 34.4421
15v150016 1.1	11 22	11	11	22	11	1.1	22	-	1		1	-		-	4	+	8.1	2.8	8.1	8.1	R.1 10	NO.45111 27.2957	10.1 ID 4511	11.1 30.4511	1108-06 1
19v150022 2.1	2.6 2.2		17	3	21	11	14	-	1		-		8.5	9.6	8.6 8.8	4 45	1	13.8	C11	113	11.7 483	ALL NEADS. 40: 90 TO 10	PSS 81.9645m	200 41-08086	41,98496
15v15e8021 1.5	13 13	11	11	-	15	15	1	-		-	-	-	4.6	5.4	5.62	5.6 5.6		3.6	8.8	0.11	K.5 MD-	145113 28.49965	11/24/18 2000	11 10.4511	1 30 4511
15V15480360 1.8		1.8	5.8	3.6	1.8	3.8	3.6	-	1	+	1	-	5.4	5.81	5.8	4 5.8	8.8	10.4	3.6	1.0	6.6 S2	13081 32.80051	Obly 12.33081	281 12 33065	5 32 3308
1341568039 2.1	2.1 4.2	2.1 2.8	2.1	3	14	1.1	11	-	1	+	-	-	7.6	141	1 11	26 25	1.01	12.0	10.7	10.7	30.7 at	#0.22556 127.9823	122 40 22554	1541 40.22556	6 40.22556
		-							-	-	-	-					1 0100001	11.553mb 9	1.838462 9	18.842 5.81	34 23462	MARC 14 12000	441 35 586	A7 16 1667	10,586.1

G. L. R. Head of the Department Electrical & Electronics Engineering Indevi Institute of Engineering & Technology TUMKUR-572106.

ALTO AN COMPANY

10-2

PRINCIPAL SIET. TUM/JKURU SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

SUBJECT	ELECTRICAL MACHINE DESIGN	SUBJECT CODE	15EE64	
	- 2014년 2017년 1월 19월 20일 전 18월 20일 전 18월 20일 전 18월 20일 전 18월 20일 전 20일 - 14월	10030000000000000000000000000000000000		

COURSE OUTCOME

C01	Identify and list, limitations, modern trends in design, manufacturing of electrical machines and properties of materials used in the electrical machines.
CO2	Derive the output equation of DC machine, discuss selection of specific loadings and magnetic circuits of DC machines, design the field windings of DC machine, and design stator and rotor circuits of a DC machine
CO3	Derive the output equations of transformer, discuss selection of specific loadings, estimate the number of cooling tubes, no load current and leakage reactance of core type transformer
CO4	Develop the output equation of induction motor, discuss selection of specific loadings and magnetic circuits of induction motor, design stator and rotor circuits of a induction motor.
CO5	Formulate the output equation of alternator, design the field windings of Synchronous machine, discuss short circuit ratio and its effects on performance of synchronous machines, design salient pole and non-salient pole alternators for given specifications

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHRI	DEVI	INSTE	FUTE	OF EN	GIN	EERING	5 & TI	CHNO	DLOGY	
FACULT	Y NAM	E	G H R	AVIKU	MAR							
BRA	NCH		1	EEE		А	CAD	EMIC Y	EAR		2018	-19
COURSE	B.I	E	SEM	ESTE	R	VI	5	ECTIO	N		EEE	
SUBJECT	ELEC	TRIC	AL MA	CHIN	E DES	IGN		SUBJE	стс	DDE	15EI	E64
CO & PO M	APPIN	G										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2		2			2	2					
CO2	1		2				2					-
CO3	1	3	3	3						1	2	
CO4	1	3	3		•	-		1				
CO5	2	3	3	3	12							
AVERAGE	1.4	3	2.6	3		. 2	2		-		2	
						OVE	RAL	L MAP	PING	OF SUI	BJECT	2.21

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	45.28	0.63		1.17			0.91	0.91)				
CO2	40.53	0.56	1.22	1.05				0.81					
CO3	45.28	0.63	1.36	1.17	1.35						-	0.91	
CO4	45.28	0.63	1.36	1.17	-		-						
CO5	45.28	0.63	1.36	1.17	1.35								
AVERAGE	44.33	0.62	1.33	1.14	1.35		0.91	0.86		200	1200	0.91	

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET, TUMAKURU

in the second	6	a contration		10000			10 - A	ALC: NO	Sec	LUCAS-		4	STAFF	NAME: G F	FRANT RIGHT	A	0.000.000		1000000	200110-0	. Al-	ALCON. THE		A 11			111		
Academic year		2018-19	lan -	54.58	(London	6	1.1.1	Total streng	pth .	1.3	100000-00	Nat	ligent	ELEC	FRICAL M	ACHINE D	ESIGN	100	Subjec	ri Casie	158	864	10000				100000		1
1.	. IA	TEST ILL	SMD	1.1.1.1.1	IA TEST 2	(15)	14	TEST MI	5M3	100	ASSIGN	MEST/G	26.12245.543			SEE	MARKIN	941)	1		Tinal C	IN ATTAIN	SHEEN T		10000		d minides	00	10.000
\$1575	COL	CO1	TUTAL	 C01 	003	EDITAL	C04	CO5	TOTAL	C01	002	0.00	CO4	0.0%	CO1+12	C03	COS	104	6.019	CO1~26.4	CO1+11.7	CO3-26.6	CO4-26.6	CO2-36.6	001	C 612	COJ	6304	COS
1543401038	1.1	3.5	2.2	1.1	1.1	2.2	1.1	1.1	2.2	1	1	1	1	1						20.3	11.2	10.1	30.5	10.3	37.96/992	33,2344.2	37.96992	37.98992	17.96992
11/1401004	2.1	11	4.2	2.1	2.1	8.2	2.1	2.3	4.2	1	. 1	1	1	1	-17	32	1.7	- 17	1.2	25.1	17.7	15.1	15.1	15.3	56.766/92	51-0385R	36.76692	56.766/02	16.76892
11/1461010	1.1	1.8	2.6	3.8	1.1	2.6	1.8	1.3	2.6	1	1	1	1	1	. 0	0	0	0	0	2.3	2.6	2.8	2.3	2.3	8.646617	10.68320	8.645617	8.646617	8.946637
1941201001	1.5	1.5	1	1.5	1.5	3	15	1.5		1	3	1	1	1		8.4	8.4	8.4	8.4	30.9	12.4	10.9	30.9	10.9	43.97744	36.795.25	40 97744	40.07744	40,97744
15V150004	1.6	3.6	3.2	1.6	1.6	3.2	3.6	1.6	8.2	1	- 1	1	1	8	10.8	10.8	10.8	30.8	:10.8	13.4	35	13.4	13.4	13.4	50.375/94	44.51019	80.37994	50.37504	10.17584
INVESTOR	1.8	3.8	1.6	1.8	1.8	3.6	1.8	1.8	3.6	1	3	1	1	1	11.6	11.6	11.6	11.6	11.6	34.4	36.7	14.4	34.4	35.4	34.13534	48.07132	54.13584	54.13534	54 13534
259/1501011	1.5	15		1.5	1.5	3	1.5	1.5	3	1	1	1	1	1	6.8	6.8	0.8	6.8	6.8	9.3	10.8	01	9.8	9.3	34.96241	32.04748	34 96243	34.96241	34 96 34 3
15/15/0014	1.6	1.6	3.2	3.6	1.6	1.2	3.6	1.6	3.2	1	3	1	1	1	10.8	30.4	10.0	30.8	10.8	18.4	- 15	13.4	28.4	13.4	50.17594	44.51010	10.37594	50 375/94	\$0.37584
1561502016	1.8	1.8	1.6	3.8	1.8	3.6	1.8	1.8	3.6	1		1	3	1	9.8	9.8	9.8	5.8	9.8	12.4	34.4	17.6	32.6	12.6	47.163642	42 72997	47,35842	47.36842	47.36842
15i/1500023	1	1	4	2	1	4	1	1	4	1	1	1	1	1	17.6	12.6	12.6	12.6	12.6	15-6	17.6	15.6	35.6	15.6	58.64062	\$2,22952	38 64662	58.64662	58.64662
159150028	1.8	1.8	3.6	18	1.8	1.6	1.8	1.8	3.6	1	1	1	1	1	8.3	8.2	8.2		8.2	11	12.8	11	. 11	11	41,25338	37.9822	41.25336	42.35338	41.35338
25W15(E080	3.8	3.8	1.6	1.8	1.8	16	2.8	1.8	3.6	1	1	1	1	1	12.2	12.2	12.2	12.2	12.7	15	16.8	15	15	15	54.316798	49.85167	54.39058	56.39098	56.39098
2541568089	1.1	1.1	2.2	1.1	3.1	2.2	11	7.1	2.2	1	1	1	- 1	1	12.0	11.4	11.0	11.4	11.4	13.5	14.6	13.5	18.5	13.5	58,75188	433) jan	50.75188	50.75188	50.75180
-	100000000				-	-		-										10000		17.04615	1160154	12-046-01	1710615	12.04615	45.20629	40.5189.0	45.28629	45.28629	45.286.29

Sampter Manh PRINCIPAL INET. TUMAKURU.

Ň

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572108.

G. H Rr

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

SUBJECT SENSORS AND TRANSDUCERS SUBJECT CODE 15EE	SUBJECT	SENSORS AND TRANSDUCERS	SUBJECT CODE	15EE662
---	---------	-------------------------	--------------	---------

COURSE OUTCOME

CO1	Use gauges and transducers to measure pressure, direction and distance.
CO2	Discuss the use of light transducers and other devices used for the measurement of electromagnetic Radiations
CO3	Explain the working of different temperature sensing devices.
CO4	Discuss the principles and applications of audio electrical sensors and transducers used for the measurement of sound
CO5	Discuss the use of sensors for the measurement of mass, volume and environmental quantitie

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

PRINCIPAL SIET., TUMAKURU

G. H. R. Martinent Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

COLLEGE		SHR	IDEVI	INSTE	FUTE	OF EN	GINI	EERING	: & TH	CHNO	LOGY	
FACULT	Y NAM	E	SHWE	ТНА Т	M							
BRAN	NCH		I	EEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.1	E	SEM	ESTE	R	VI	5	SECTIO	N		EEE	
SUBJECT	SENS	ORS A	AND TH	RANSE	UCEF	as		SUBJE	ст со	DDE	15EE	662
CO & PO M	APPIN	G			11							
a ferral	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	3	2	1	2	2	2	1	3	2	2	1
CO2	2	1	3	3	2	1	2	2	1	2	2	1
CO3	2	1	2	2	3	2	2	1	2	2	2	1
CO4	2	2	3	2	1	1	2	2	3	2	1	2
CO5	2	3	2	1	2	2	3	2	2	3	. 2	2
AVERAGE	2.2	2	2,4	1.8	2	1.6	2.2	1.6	2.2	2.2	1.8	1.8
		-				OVE	RAL	L MAP	PING	OF SUE	BJECT	1.98

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	43.26	0.95	0.86	1.03	0.77	0.86	0.69	0.95	0.69	0.95	0.95	0.77	0.77
CO2	38.98	0.85	0.77	0.93	0.70	0.77	0.62	0.85	0.62	0.85	0.85	0.70	0.70
CO3	43.26	0.95	0.86	1.03	0.77	0.86	0.69	0.95	0.69	0.95	0.95	0.77	0.77
CO4	43.26	0.95	0.86	1.03	0.77	0.86	0.69	0.95	0.69	0.95	0.95	0.77	0.77
C05	43.26	0.95	0.86	1.03	0.77	0.86	0.69	0.95	0.69	0.95	0.95	0.77	0.77
AVERAGE	42.40	0.93	0.84	1.01	0.75	0.84	0.67	0.93	0.67	0.93	0.93	0.75	0.75
		-	-	12010		- 1-15 0		FIN	AL AT	TAINN	MENT L	EVEL	0.83

10

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology - TUMKUR-572106.

2			600	37,21405	18124.95	31, 95,489	45.12278	36,84211	1411021-40	時間になめの	「「「「「」」」」」	40,4611	あるとうまた	33.47348	42.4813	48.62400
		00	100	1111111111	10.34546	21.95489	80011128	10,660331	1011101	19-47348	48.87218	8108.08	58.27068	15.4776.0	42,481.2	30163-00
		FireSuburt CO	1007	11,21805	14 Melleri	11.16,409	#111278	110418	14,135,94	N. ATMA	48.87218	41.4025	54.27064	31 A 7 104	42,4813	00 A/2MON
		No.	000	11.8.7.985	15.60811	11000140	40.79408	11.02785	48.07322	P5-40431	43.12344	36.795.36	COULT-IN	II 00811	17.9803	44.53039
			001	30H17/11	18. INTAK	11, 95,460	A%.111716	10.86013	54.13534	19.47708	48.87118	40.6015	58.17068	19.47768	43.481.2	#0+C340#
			CO9+36.4	9.6	10.2	8.8	11	1.1	14.4	10.1	11	1114	11.5	10.5	11.1	11.0
Ì		MENT	CONDUM CONDUM	11	10.1	8.5	11	4.8	14.4	2015	11	10.8	Di M	10 M	11.1	11.0
	101	1444 Cres ATTAINMENT	0.00-38.4	1.4	19.7	45	2	4.4	34.4	10.5	11	12.8	15.61	20.5	11.0	11.0
	158(8)801	Taug O	C01+33.7	6.13	12	8.8	13.61	11.4	14.2	12	14.6	22.4	114	11	13.00	51.
	Subject Code		COI-26.0	4.4	101	8.5	13	9.8	14.4	10.5	11	10.8	15.51	10.5	11.1	11.2
	Subjex		0.04	2.4	7.4	10	14	1.1	11.6	-	10.4	1.1	- 10A	-		10.4
		-	000	1.4	7.4	0	44	1.1	11.6	-	20.4	1.1	11.4	-	1.1	00.00
	CER	SEE MARKSOND	003	1.4	14	6.2	9.4	24	11.6	-	30.4	8.1	12.4	-	8.8	10.4
	TRANSPOCER	SER	(0)	7.4	24	63	9.4	3,2	13.6	-	10.4	8.7	12.4	-	1	10.4
WINA TAK	SENSORS AND 1		0.01403	3.4	1.4	1.2	9.0	13	11.6	-	10.4	1.4	114	-	1.0	111.4
START WANT SHOW THAT YAS	SEAS.		0.00	-	-	-	-	-	-	-	-	-	-	-	-	-
VIANY.	14	UR205 MB	00	-	-	-	1	-	-	1	-	-	-	-	-	1
	Subjett	MENTIQU	001	-	-	-	-	-	-	-	-	-	-	-	-	-
		ASSIGNMENT	000	-	-	-	-	-	-	-	-	-	-	-	-	-
	=		100	-	-	-	1	-	-	-	-	-	-	-	-	-
	-	- tw	TOTAL	-	16	14	11	11	3.6	-	77	11	-77	-	-	16
	Tatal strength	ANTIG'TEST ARMA	100	1.5	1.0	11	1.6	1.6	1.0	1.5	1.6	1.0	11	-TA	LA.	1.0
		AL.	001	1.1	1.6	11	1.6	1.6	1.0	10	1.0	11	17	141	11	1.0
		- 16	TOTAL	-	14	14	3.2	13	14		32	3.7	74	-	-	3.6
	-	14 TEST 20191	(0)	1.5	1.0	11	1.6	1.6	1.6	- 15	1.6	1.6	11	1.1	1.1	1.0
	SEM:	1	600	1.5	1.6	17	1.6	1.6	1.8	1.1	1.6	1.6	11	1.8	1.1	1.6
		USSNI	TOTAL	-	16	2.6	10	1.0	1.6	-	12	12	4.7	-	-	14
	2018-19	AA TEST 645	000	15	1.8	1.1	1.6	1.6	1.1	1.1	16	- 1.6	2.1	1.1	1.1	1.0
		VI	C01	3.5	1.6	11	1.6	1.6	1.6	1.1	1.4	1.6	1.1	1.5	1.5	1.8
	Academic year		1.84	10000adA01	151/1403046	15V1404040	1001051ASI	1941041004	15419489948	11010101752	TSV () 68/12/4	15v1168016	T14/1/00/022	1///////1//1	1/vr1/v00340	1/w12/00/##

PRINCIPAL A.

2.5

G-H R Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

1

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

6 Sem

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGG

SUBJECT SOLAR AND WIND ENERGY SUBJECT CODE 15EE664

COURSE OUTCOME

HILEVI

CO1	Discuss the importance of the role of renewable energy, the concept of energy storage and the principles of energy storage devices.
CO2	Discuss the concept of solar radiation data and solar PV system fabrication, operation of solar cell, sizing and design of PV system.
CO3	Describe the process of harnessing solar energy and its applications in heating and cooling.
CO4	Explain basic Principles of Wind Energy Conversion, collection of wind data, energy estimation and site selection.
CO5	Discuss the performance of Wind-machines, energy storage, applications of Wind Energy and environmental aspects.

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHRI	DEVI	INSTE	TUTE	OF EN	GIN	EERING	; & TI	CHNO	LOGY	
FACULT	Y NAM	E	R TEJ.	ASHW	INI							1.0
BRAN	NCH		1	EEE		A	CAD	еміс у	EAR		2018	-19
COURSE	B.I	E	SEM	ESTE	R	VI		SECTIO	N		EEE	
SUBJECT	SOLA	RAN	D WIN	D ENE	RGY			SUBJE	стс	DDE	15EE	664
CO & PO M	APPIN	G										
Sel Securit	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POIL	PO12
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	3			1	1					1
CO2	2	3	3			1	1					1
CO3	2	3	3			1	1					1
CO4	2	3	3			1	T	1		1		1
C05	2	3	3			1	1	1				1
AVERAGE	2	3	3			1	1					1
			-			OVE	RAL	L MAP	PING	OF SUE	BJECT	1.83

日日で	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	46.90	0.91	1.40	1.40			0.46	0.46				1.100	0.46
CO2	42.22	0.84	1.27	1.27			0.42	0.42					0.42
CO3	46.90	0.91	1.40	1.40			0.46	0.46	-				0.46
CO4	46.90	0.91	1.40	1.40			0.46	0.46					0.46
C05	46.90	0.91	1.40	1.40			0.46	0.46		- 1			0.46
AVERAGE	45.96	0.90	1.37	1.37			0.45	0.45					0.45
	1.3					-		FIN	AL AT	TAINN	MENT I	EVEL	0.83

G. a Roma Head of the Department Electrical & Electronics Engineering Stridevi Institute of Engineering & Technik TUMKUR-572106.

PRINCIPAL SIET, TUMAKURU

F			000	42,4813	51.003.2	17.43405	9	10.17594	45,1122%	PLANDS	47.96842	48.87738	11:00.152	AJ.85.74	31.4747	57.89434	
		0	100	42,4812	11.0005.0	17.21005	10	10, 10504 1	46,11278	20000	47, N664.1	48.87218	53.00/5/J	42.85.714	1848.15	57.89407u 3	
		of redwond CD	C03	42,4612	0.00050	7.21805	10	10,00044	4h.11278.4	13.609,25	1.10842	48.87218.4	53.00752	42.88734 4	1012010	57.89474	
		Nulli	000	F. 58817.1	\$ 47178 W	1.4,01801	42.32965	40.10186 5	# 1.55646(0)	「「「「「「「」」」」	1.13344 4	44,510,001.4	en.25638. 5	IN 10014 4	66. 686427	Vit-ant) 1	
			001	42.4617 3	1.00757	F.21805. 1	10	56,13584 4	45.11238	いるのた	12.6 47.36842 4	48,87218-4	11:00/17 +	42.85.724	M.KPUP 4	57,894.34	
			COM-36.4	10.0	14.1 Y	1.00	10.1	11.4 5	11 4	1.91	12.6 4	10 4	181 1	11.4 4	11.6	15.4 3	
		LIND	04-34.A. C	11.8	34.1	9.6	18.81	13.4	10	19	11.6	10	14.1	11.4	13.44	13.4	
	1	ord Cus ATTAINMENT	COMMA COP-34.8	11.0	14.1	9.6	00	11.4	10	1.15	12.6	10	14.1	11.4	13.8	15.4	
	15415-654	Yorked Case	00+40.1 C	12.4	187	11.4	14.4	15.2	11.4	9.1	14.61	14	36.6	10.2	15.4	11	
	ada		Ot+34.4	11.3	14.1	6.6	19.41	13.4	12	1.0	13.61	13	1.14.1	11.6	13.6	15.4	
	Subject Cody		0 000		11	1.4	11.7	10.6	17.6	3.6	4.6	10	10.6	8.6	10.01	12.8	
	-		CIN	*	111	1.4	11.11	10.4	10.0	5.6	9.6	90	19.4	9.6	10.6	12.6	
		SEE, MARKSON	001	*	11	141	10.01	10.01	10	1.6	44	11	10.6	9.9	30.6	11.6	
	NUMBER	588. N	000		11	1.4	11.11	10.6	17.6	3.6	4.4	101	10.0	9.6	10.01	12.6	
(e-write)	SOLAR WIND ENLIRCY		C01+17	0	11	1.4	11.2	10.6	9.2	1.6	9.6	101	10.6	8.6	10.00	12.8	
INTRACOUNTRY IN TH	2005		000 0	-	_	_	-	-	_	-	-	-	-	-	-	_	
STAFF NAME		(15 M)	0.01	-	-	_	-		_	-	-	_	-	-	-	-	
	Subject	N1 OUT	C00	-	-	_	-	_	-	-				-	-		
		ASSENEMENT/ OUT	C01 0	_	_	_	_	_	_		-	-	-	-		-	
	13	AS	000	-	-	-	-				-	-	-	-		-	
	-		FOTAL A	2.4	17	-	22		14	14				18		3.2	
	Total strength	14 TEST 305001	CO8 100	61	- 17	-	-	-	1.6	-	-	-	1.1	1.8	~	16	
	Total	ATES IN	0 100	0	1.1	1.5.		1.1	1.1	1.1	~	-	2.8 2	1.0	-	10.1	
	-		DIAL C	2.6 1	4.1 1		-	1 1	3.6 1				1	1 1		1 18	
		IA TEST 1050	CO0 100	13 2	11 4	1.0		1.8 8.1	1.0 8.1	1		-	25 1	1.6	~	1.6 31	
		A TES	CO4 01	1. 1.	2.1 . 2.	1.9.1		1.0	1.0 1.	1 1		-	2.5 2.5	1 1		1.6 L	
	NO85		-	2.6 1	-		-						2				
	110	10500	DT TOYAL	1 1	14- 41		11 12	8 1.6	8 16	1 2.6	-	-		8.8 8.6	-	0 3.1	
	2918-19	1A TEST 105MI	10 COI		1 13	51 13			1.16	1.1	1		1 25	0 1.6		0 10	
			100			0 15	0 11	-		0 0		1 9		117 10	-	0 1.0	
	Acadeoric page		NS/I	15WballEbot	TINDAEE004	TWARFORD	DIGESCI VIT	11W1544004	15M1568010	TIN1561011	TIVESCOD4	15V1565036	1941560822	15w1541923	19415EE030	13v1566039	Contraction of the local division of the loc

Kender ste 90-0-944 SI. - NAURU.

Sugar.

6.4 R ~

14

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUBJECT	POWER SYSTEM OPERATION CONTROL	SUBJECT CODE	15EE81
---------	-----------------------------------	--------------	--------

COURSE OUTCOME

CO1. Describe various levels of controls in power systems, architecture and configuration of SCADA

CO2. Develop and analyze mathematical models of Automatic Load Frequency Control.

CO3. Develop mathematical model of Automatic Generation Control in Interconnected Power system

CO4. Discuss the Control of Voltage, Reactive Power and Voltage collapse

CO5. Explain security, contingency analysis, and state estimation of power systems

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G - H RAME Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET., TUMAKURU

COLLEGE		SHR	DEVI	INSTI	TUTE	OF E	NGIN	EERING	G & TI	ECHNO	DLOGY	
FACULTY	NAM	E	Mrs. So	OWMY	(A. T.	с						2
BRAN	СН		F	EEE	4	A	CAD	EMIC Y	EAR		2018	-19
COURSE	В.	E	SEM	ESTE	R	vin		SECTIO	N		EEE	-
SUBJECT	PO	OWER	SYST CO	EM OI		TION &	\$	SUBJE	стс	DDE	15EI	E81 (
CO & PO M	APPE	NG				_						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3		211			125					1
CO2	2	3										1
CO3	.2	3										1
CO4	2	3			24							1.
CO5	2	3										1
AVERAGE	• 2	3										1
ES th	20				Sea.	ovi	ERAL	L MAP	PING	OF SUI	BJECT	2

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	66.49	1.329	1.994				1005	1					0.664
CO2	62.61	1.252	1.878				19110						0.626
CO3	62.61	1.252	1.878										0.626
<u>CO4</u>	62.61	1.252	1.878							-			0.626
CO5 ,	45.46	0.909	1.363			1.1							0.454
AVERAGE	664	1.198	1.798										0.599
		They is	1 2 11					FIN	AL AT	TAINN	IENT I	EVEL	1.198

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET. TUMAKURU

1			9	6.6	10.4	5.6	2.00	5.6	5.6	6	6.6	9	~	8.8	8.8	10	8.8	9.4	6.2	9.4	1	11.2			45		
	SEE Tot	MOM	45	33	. 52	33	39	西	22	45	33	45	35	44	44	50	44	42	31	47	35	56			40.2	67	
	S	COS	46.9	46.9	50.0	46.9	40.6	37.5	40.6	50.0	40.6	50.0	46.9	43.8	46.9	50.0	43.8	46.9	46.9	43.8	43.8	46.9			45.5		Ī
-	00	C04	69,4	59.6	75.1	52.4	40.0	47.3	\$1.4	69.4	555	69.4	61.2	64.5	68.6	73.5	64.5	71.0	58.0	71.0	57.1	74.3			62.6		
-		C03	69.4	59.6	75.1	-	40.0	E.74	51.4	69.4	55.5	69.4	61.2	64.5	68.6	73.5	64.5	71.0	58.0	71.0	57.1	74.3			62.6		
	% of individu	C01 (69.4	59.6	151	52.4	40.0	47.3	51.4	69.4	55.5	69.4	61.2	64.5	68.6	73.5	64.5	71.0	58.0	71.0	1.125	543			62.6		
		CO1 0	69.4 6	-	79.2 7	67.8 5	64.5 4	51.4 4	51.4 -5	735 6	55.5 5	73.5 6	61.2 6	68.6 6	68.6 6	77.6 7	68.6 6	71.0 7	58.0 5	66.9	61.2 5	82.4 7			66.5		
	Η		15 6		16 7	-	13 6		13 5	16 7	-	-	15 6	14 6	15 6	-		15 7		14 6	14 6	15 8	-	-	-		
-	ENT	-24.500	17 1		18.4 1	12.6 1	9.8 1	11.6 1	12.6 1	17 1	13.6 1	17 1	15 1	15.8 1	16.8.1	18 1	15.8 1	17.4 1	14.2 1	17.4 1	14 1	~	_	-			
-	TAINM	24,004	-		-		-		-	-		-	-			-	-	-	-		-	2 18.		-	-		
155.5.81	Total COs ATTAINMENT	24,003-	7 17	5 14.6	4. 18.4	6 12.6	8.6 8	6 11.6	6 12.6	7 17	6 13.6	7 17	5 15	8 15.8	8 16.8	8 18	8 15.8	A 17.4	2 14.2	4 17.4	4 14	2 18.2		-	-		
	Total	01-24/02-24/03-24/03-24/04-24/05-3	1 17	6 14.6	4 18.4	6 12.6	86 8	6 11.6	6 12.6	8 17	6 13.6	8 17	112	8 15.8	8 16.8	9 18	8 15.8	4 17.4	2 14.2	4 17.4	5 14	2 18.2		-	-		
Subject Code			17	14.6	4 19.4	16.6	15	5 12.6	12.6	100	13.6		15	16.8	16.8	19	1	1 17.4	14.2	16.4	25	2 20.2		-	-		-
Sub		4 C05	101	6.6	1 10.4	6.6	5.8	19:5	5.6	đ	6.6	6	2	8.8	8,8	10	8.8	9.4	6.2	9.4	2	11.2		_			Ļ
=	SEE MARKS(80)	C04	5	6.6	10.4	6.6	5.8	5.5	5.6	6	6.6	σ.	~	8.8	8.8	10	8.8	9.4	6.2	9,6	2	11.2		_	L		L
11.6.1	MAR	003	6	6.6	10.4	6.6	5.8	5.6	5.6	đ	6.6	5	1	8.8	8.8	10	8.8	9.4	6.2	4.4	1	11.2					L
veratio	SEE	1 CO1	σ	6.6	10.4	6.6	5.8	5.6	5.6	en	6.6	a,	2	80 00	00 00	10	80 80	9.4	62	9.4	2	11.2					L
Ir System Operation & Cit		C05 C01~12	σ	99	10.4	6.6	5,8	95	5.5	σ	6.6	φ	2	8.8	8.8	10	8.8	9.4	6.2	9.4	2	11.2					
IT SVS	QUIZ(5 M)	C05	1	-	-	-	-	1	-	-	1	-	-	-	-	-	-	-	•	1	1	1					
Subject	cing /	004	-	-	+	-		-		-		-	-	=	-	-	-	-		-	-	1					
Sub	ENT	C03	1	-	-	-	+	-	+	-	1	-1	1		-	-	1	1	1	1	-	1					[
	ASSIGNEMEN	CO1 CO2 CO3	-	1	-	-	1	-	-1	-	1	-	1		1	1	1	1	1	1	1	1					
50	ASSIG	ŝ	-	-	-	-	1	-	-	-	-	-	-	-	-		-	-	1	1	-	+					
ngth	IA TEST 3(15M)	COS COS TOTAL	14	14	15	14	12	11	12	15	12	15	14	13	14	15	13	14	14	13	13	14					
Fotal Atrength	EST J	C05	2	1	1	sin.	m	ŝ	us.	7	9	ż	2	9	3	*	9	2	2	7	9	0					
2	I VI		2	2	-00	a	e,	9	40	-	9	-00	4	1	1	-	1	2	2	9	1	=					
	(IVS)	TOTAL	14	34	15	14	12	11	- 12	15	12	15	14	13	14	15	1	14	14	13	13	14			1		1
- III/	ST 2(C04	~	4	1	uri,		s	9	1	9	1	2	4	2	1	9	3	2	2	÷	9			Γ		ľ
SEM VIII	IA TEST 2(15M)	cos	7	1	8	01	6	9	10	8	9	80	7	2	2	60	2	2	7	9	1	90		-			-
	(1NS1	CO2 TOTAL CO3 CO4	14	14	15	14	12	11	12	15	12	15	14	13	14	15	13	34	14	13	13	14					[
610	LA TEST 1(15M)	C02	2	1	1	-11	m	1	φ	2	9	*	1	φ	1	7	9	2	1	. 7	10	9					Ī
2018-19	IA TO	001	1	.1.	. 8	6	6	9	9	8	9	80	7	7	1	80	7	7	7	9	1	-					-
Academic year	SEMIVIII	NSO	15V14EE006	15V15EE003	15V15EE007	1SV1SEBODE	15V15EE012	15V15EE013	1SV15EE015	1SV15EE017	15V15EE019	15V15EE020	15V15EE024	15V15EE025	15V15EE032	15V15EE033	15V15EE035	15V15EE036	15V156E037	15V16EE401	15V16EE405	15V16EE409					

Head of the Department SIET Electrical & Electronics Engineering Shidevi Institute of Engineering & Technology

ml

. PRINCIPAL SIET. TUMAKURU

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUBJECT	INDUSTRIAL DRIVES & APPLICATIONS	SUBJECT CODE	15EE82
---------	-------------------------------------	--------------	--------

COURSE OUTCOME

SHRIDE

CO1: Explain the advantages, choice and control of electric drive

CO2: Explain the dynamics, generating and motoring modes of operation of electric drives

- CO3: Explain the selection of motor power rating to suit industry requirements
- CO4: Analyze the performance & control of DC motor drives using controlled rectifiers
- CO5: Analyze the performance & control of converter fed Induction motor, synchronous motor & stepper motor drives

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Head of the Department Electrical & Electronics Engineering Shridëvi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SILA. LUMAKURU

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF E	NGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	E I	Mr. G.	H. RA	VIKU	MAR						58
BRAN	СН		F	EEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	vш	8	SECTIO	N		EEE	1
SUBJECT		IND	USTR APPL	IAL D		š &		SUBJE	ст со	DDE	15EI	E82
CO & PO M	APPI	NG	20						1.0	1		
Res Tal	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	2	-		-	-			100	-	-		2
CO2	2	3	-	-	-	-	-	-	-	-	-	2
CO3	2	3	-		-	·		-		-	-	2
CO4	2	3	-	-	-					-		2
C05	2	2	-		-		-	-	-		-	2.
AVERAGE	2	2	-	-	-			-	-	-	-	2
	Call of the	12125				OVI	ERAL	L MAP	PING	OF SUI	BJECT	2

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12
CO1	67.14	1.342			-		•		-				1.342
CO2	65.30	1.306	1.959	-	-	-		-	-	-	-	-	1.306
CO3	65.30	1.306	1.959				14		-	12			1.306
CO4	65.30	1.306	1.959	-		-	-	-	-	-	-		1.306
CO5	46.71	0.934	0.934				19-22		-		-		0.934
AVERAGE	illine.	1.238	1.702		-	-	-		-		-	-	1.238
	Seat-				- Activ			FIN	AL AT	TAIN	MENTI	EVEL	1.392

G - 1.1 R Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

. Wander PRINCIPAL SIET., TUMAKURU

-	SEE Tot	80M	28.0 5.6	31.0 6.2	51.0 10.2	38.0 7.6	49.0 9.8	9.0 1.8	30.0 6.0	50.0 10.0	33.0 6.6	45.0 9.8	37.0 7.6	39.0 7.8	410 26	1	17	1717								55.0 55.0 55.0 55.0 40.0 55.0 55.0 55.0	55.0 55.0 40.0 54.0 28.0 68.0 68.7 68.7 68.75
L		COS	46.9	50.0	50.0	50.0	37.5	6'99	50.0	50.0	46.9	50.0	6.94	43.8	46.9		6.99	46.9	46.9 46.9 46.9	46.9 46.9 45.9 43.8	46.9 46.9 43.8 43.8	46.9 46.9 45.8 43.8 43.8 43.8 43.8 43.8	46.9 46.9 45.8 43.8 43.8 43.8 43.8 43.8	46.9 46.9 45.9 43.8 43.8 43.8 43.8 45.9	46.9 46.9 43.8 43.8 43.8 43.8 45.9		2220000
	oal CO	00	55.5	58.0	743	63.7	64.5	44.1	57.1	73.5	59,6	72.7	62.9	60.4	67.8		73.5	73.5	73.5 77.6 65.3	73.5 77.6 65.3 72.7	73.5 77.6 65.3 72.7 67.8	73.5 77.6 (55.3 72.7 67.8 51.4	73.5 77.6 65.3 67.8 51.4 84.1	73.5 77.6 65.3 72.7 65.8 51.4 84.1	73.5 77.6 65.3 67.8 51.4 84.1		22200
	of Individual CO	COU	55.5	58.0	74.3	63.7	64.5	40.1	T'45	73.5	59.6	72.7	62.9	60.4	67.8		73.5	73.5	73.5 77.6 65.3	73.5 77.6 65.3 72.7	72.7 72.7 67.8	73.5 77.6 65.3 67.8 51.4	72.7 72.7 65.3 65.3 65.8 51.4 84.1	73.5 77.6 65.3 65.3 67.8 51.4 84.1	73.5 77.6 65.3 67.8 51.4 84.1		8 4 7 6 7 7
	2.0	C03	55.5	S&D	143	63.7	64.5	44.1	57.1	73.5	59.65	72.7	62.9	60.4	67,8		73.5	73.5	73.5 77.6 65.3	73.5 77.6 65.3 72.7	73.5 77.6 65.3 67.8	73.5 77.5 65.3 77.7 67.8 51.4	73.5 77.6 65.3 72.7 57.8 57.8 51.4 84.1	73.5 77.5 65.3 72.7 67.8 67.8 67.8 67.8 84.1	73.5 77.5 65.3 67.8 67.8 51.4 84.1	73.5 77.6 65.3 65.8 67.8 87.3 84.1 84.1	71.5 65.3 65.3 57.8 65.3 84.1 84.1 84.1
		C01	55.5	62.0	78.4	67.8	68.6	35.9	61.2	77.6	59.65	76.7	679	645	67.8		73.5	73.5	73.5 77.6 65.3	73.5 77.6 663 76.7	73.5 77.6 65.3 63.7 63.7	73.5 77.6 65.3 76.7 63.7 55.5	73.5 77.6 63.7 63.7 63.7 53.5 92.2 92.2	735 77.6 63.7 63.7 63.7 63.7 63.7 63.7 63.7	735 776 68.7 68.7 55.5 55.5 55.5 92.2	73.5 77.6 63.7 63.7 63.7 53.5 92.2 92.2 92.2	735 776 633 932 932 932
		CO5=3.	15	16	16	16	12	15	16	16	12	16	15	14	15	1	15	2 2	2 2 2	2 2 2 2	21 21 21 21 21 21 21	2 2 2 2 3 3 3 3	21 21 21 21 21 21 21 21 21 21 21 21 21 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	2 2 2 2 2 2 2	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	NMENT	04+14.5	13.6	14.2	18.2	15.6	15.8	10.8	14	18	14.6	17.8	15.4	14,8	16.6	18		19	19	19 16 17,8	19 16 17.8 16.6	19 16 17.8 16.6 12.6	19 16.6 12.6 20.6 20.6	19 16 17.8 17.8 16.6 12.6 20.6	19 16.6 12.8 16.6 20.6 20.6	19 16 17.8 16.6 12.6 20.6 20.6	19 16.6 17.8 16.6 20.6 20.6
1 701	Total COs ATTAINMENT	01+24/102-24/103-24/004-24,005-3	13,6	14.2	18.2	15.6	15.8	10.8	14	18	14.6	17.8	15.4	14.8	16.6	18		19	19	19 16 17.8	19 16 17.8 16.6	19 16 16.6 12.6	19 16 17.8 16.6 12.6 20.6	19 16 17.8 16.6 12.6 20.6	19 16 17.8 16.6 12.6 20.6	19 16 17,8 17,8 16,6 12,6 20,6	19 16 17,8 16,6 12,6 20,6
20.1.02	stal COs	02-24.5	13.6	14.2	18.2	15.6	15.8	10.8	14	18	14.6	17.8	15.4	14.8	16.6	18		19	19	19 16 17.8	19 16 17.8 16.6	19 16 17.8 16.6 12.6	19 166 1566 15.6 20.6	19 16 15.6 15.6 20.6	19 16.6 16.6 12.6 20.6	19 166 17.8 15.6 15.6 20.6	19 15.6 12.6 20.5
1 Code	Te	01+241	13.6	15.2	19.2	16.6	16.8	8.8	51	19	14.6	18.8	15.4	15.8	16.6	18	2	19	16	19 16 18.8	19 16 18.8 15.6	19 16 18.8 13.6 13.6	19 16 18.8 18.8 13.6 13.6 22.6	19 16 188 188 156 136 226	19 16 188 188 156 136 2256	19 16 188 156 136 226	19 16 138 136 136 2256 2256
Subject Code		COS D	5.5	6.2	10.2	7.6	88	1.8	40	10	6.6	9.6	7.4	7.8	8.6	10	11	-	; =0	8 10.8	8.6 8.6	8.6 5.6	8.6 33.6 33.6	86 5.6 13.6	8 86 86 108 108 108	86 56 56 13.6	86 366 56 13.6
	(88)S	C04	5.6	62	10.2	7.6	80	1.8	ω	10	6.6	9.8	7.4	7,8	8.6	10	11		-	8 10.8	8 10.8 8.6	8 10.8 8.6 5.6	8 10.8 8.6 5.6 13.6	8 10.8 8.6 5.6 13.6	8 10.8 8.6 5.5 13.6	8 10.8 8.6 5.6 13.6	8 10.8 5.6 13.6
VPPLIC	SEE MARKS(80)	C03	5.6	62	10.2	7.6	9.8	1.8	9	10	6.6	9.8	7.4	7.8	8.6	10	11		m	-							
ESAM	SEE	12 CO2	5.6	6.2	10.2	7.6	9.8	1.8	4	30	6.6	9.8	7.4	7.8	8.6	10	11		80								
RIAL DRIVES & APPLIC	L	5 CO1-12	5.6	6.2	10.2	7.6	9.8	1.8	φ	10	6.6	98	7.4	7.8	86	10	11		=0	8 10.8	8 8.6 8.6	8 30.8 8.6 5,6	8 26 5,6 23,6	8 86 56 13.6	8 86 56 13.6	8 25.6 23.5 23.5	8 20.8 26.6 25.6 23.5
	623	4 COS	1	1	1	1	1	+	1	-	1	1	1	-	1	1	1		1						+++++		+++++++++++++++++++++++++++++++++++++++
Subject	12	33 CO4	1	1	1	1	1	-1	-	-	1	-	1	-	1	1	1		-					+++++	++++++		
-	EMEN	C02 C03	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	,	-	1 1					++++++		+++++++++++++++++++++++++++++++++++++++
20	VSSIGN	8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	-					***	*****	***
ngth	IA TEST 3(15M) ASSIGNEMENT	COS TOTAL	34	15	15	15	11	14	35	15	14	15	- 14	13	14	14	14		41	5 12	5 7 7	4 1 2 2	1 1 1 1 1 1	1 1 1 1 1	4 11 11 11 11 11 11 11 11 11 11 11 11 11	13 13	4 8 8 8
Fotal strength	UST'S	COS	7	1	*	7	5	-	2	ħ	1	*	7	9	2	7	7			- 10	- 10 ~	- 4 - 4	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	4 4 4 4	1 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	- 10 × 10 ×
T	IA.	CO5	1	æ	10	-	9	æ	-	œ	2	- #	7	2	2	2	6	+	-		9	4 9 1	~ ~ ~ ~ ~	8 1 6 1	2 4 8	× 9 ^ 8	8 4
	0(15M)	TOTAL	14	15	15	15	11	14	15	15	14	15	14	E	14	14	34		-	\$ 3	\$ 2 2	* = = =	* # # # #				
SEM VIII	IA TEST 2(15M)	3 CO4	1	0	*	-	an.	00	2	2	1	4	7	9	4	1	7	1		- 4	4 4 1	4 4 4	9 4 9 9		6 9	8 9 9	8 9 9
SEN		M. C03	1	80	80	80	ø	9		90	1	-	2	2	~	2	2	1	-						n n 9 n 80	n 19 h 80	- N 9 N 8
	IA TEST I(15M)	CO2 [TOTAL]	14	15	15	15	п	14	15	15	14	15	14	EI	14	14	14	ł	14								
2018-19	TEST		7	1	2	~	5	-	1	2	2	7	7	9	P1	7	7	ł	2								
		C01	2	-00	-	-	9	9	*	-00	2	-	2	2	1	2	~		P	22	200	nnun	~~~~~	NN 9 N 80	N 9 N 80	h h 4 h 60	n n @ n 80
Academic year	SEMINTH	USN	1SV14EE006	ISV15EED03	1SV15EE007	15V15EE008	15V15EE012	15V15EE013	15V15EE015	15V15EE017	15V15EE019	XSV15EE020	15V15EE024	15V15EE025	15V15EE032	15V15EE033	15V15EE035		15V15EED36	15V15EE036 15V15EE037	15V15EE036 15V15EE037 15V16EE401	15V15EE036 15V15EE037 15V16EE401 15V16EE405	15V15EE037 15V15EE037 15V16EE401 15V16EE405 15V16EE405 15V16EE409	15V15EE036 15V15EE037 15V16EE401 15V16EE405 15V16EE405	15V15EE037 15V15EE037 15V15EE401 15V15EE405 15V15EE405	15V15EE037 15V15EE037 15V16EE401 15V16EE405 15V16EE405	15V15EE035 15V15EE0037 15V16EE401 15V16EE405 15V16EE409

G. H.R. Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572196.

PRINCIPAL SIET. TUMAKURU

e.

38

SHRIDEVI

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUBJECT	OPERATION & MAINTENANCE OF SOLAR ELECTRIC SYSTEM	SUBJECT CODE	15EE836
---------	---	--------------	---------

COURSE OUTCOME

CO1. Explain PV technology, PV modules

CO2. Connection of PV modules to form arrays.

CO3. Explain the use of inverters and mounting method of the PV system

CO4. Asses the site for PV system installation

CO5. Explain the installation, commissioning, operation & maintenance of PV systems

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology - TUMKUR-572196.

PRINCIPAL

SIET. TUMAKURU

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF E	IGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	E	Dr. H. I	B. PHA	NI RA	JU	×.,	1.4	* 4		35	
BRAN	сн		I	EEE		A	CADE	EMIC Y	EAR	. •	2018	-19
COURSE	B.	E	SEM	ESTE	R	vш	s	естю	N	-	EEE	
SUBJECT	· OP		TION & AR ELF				F	SUBJE	ст со	DDE	15EE	832
CO & PO M	APPI	NG				10		4				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	11				1.1.2.1				2
CO2	2	2										2
CO3	2	2					1224	1		1		2
CO4	2	2									211-2	2
CO5	2	2		10.00	kiles i	i kaj		0.6010	-artist			2
AVERAGE	2	2										2.
2217			Contrast in		225	ovi	ERAL	L MAP	PING	OF SUI	BJECT	2

ALL DECK	.CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	76.08	1.521	1.521		120		1			1			1.521
CO2	75.46	1.509	1.509										1.509
CO3	75.46	1.509	1.509		120								1.509
CO4	75.46	1.509	1.509										1.509
CO5	46.40	0.928	0.928										0.928
AVERAGE		1.395	1.395							1			1.395
	23.19							FIN	AL AT	TAIN	MENTI	EVEL	1.395

G.H.R. Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

PRINCIPAL SIET. TUMAKURU.

1	SEE Tot	SOM	66	53	68	54	40	42	40	60	45	55	50	52	42	57	53	56	63	50	57	61		1000	53.2	88,6667	
		CO5	43.8	46.9	50.0	50.0	43.8	43.8	46.5	50.0	50.0	46.9	46.9	43.8	46.9	37.5	46.9	46.9	46.9	46.9	46.9	46.9			46.4		ĺ
	al CO	COM	86.5	75.9	88.2	76.7	61.2	66.9	65,3	81.6	73.5	77.6	73.5	71.0	66.9	75.1	75.9	78.4	84.1	73.5	79.2	78.4	-		75.5		
	of Individual CO	CO3	86.5	75.9	88.2	76.7	61.2	6.69	65.3	81.6	73.5	77.6	73.5	71.0	66.99	75,1	75.9	78.4	84.1	73.5	79.2	78.4			75.5		
1	% of	C01	86.5	75.9	88.2	76.7	61.2	6.69	65.3	81.6	73.5	77.6	73.5	71.0	699	75.1	75.9	78.4	84.1	73.5	79.2	78.4			75.5		
		100	82.4	75.9	92.2	80.8	65.3	62.9	65.3	85.7	69.4	77.6	73.5	1.24	6.99	71.0	75.9	78.4	B4.1	73.5	79.2	86.5		1	76.1		
	_	05=3	14	15	16	16	14	14	15	16	91	- 15	15	14	15	12	15	15	15	15	15	15					
	VMEN	04-24	212	18.6	21.6	18.8	15	16.4	16	8	18	19	18	17.4	16.4	18.4	18.6	19.2	20.6	18	19.4	19.2					
136	TTAP	03-24_04-24_05-3	212	18.6	21.6	18.8	15	16.4	36	20	18	19	18	17.4	16.4	18.4	18.6	19.2	20.6	18	19.4	19.2					Γ
15EE836	Fotal COs ATTAINMENT	01-24/02-24/0	21.2	18.6	21.6	18.8	15	16.4	36	30	18	19	18	17.4	16.4	18.4	18.6	19.2	20.6	18	19.4	19.2					
Subject Code	Tot	201-242	20.2	18.6	22,6	19.8	16	15.4	-16	21	17	19	18	18.4	16.4	17.4	18.6	19.2	20.6	18	19.4	21.2					
Subject		C05	13.2	10.6	13.6	10.8	-	84	-00	12	5	11	10	10.4	8.4	11.4	10.6	11.2	12.6	10	11.4	12.2					
	(08)	100	13.2	10.6	13.6	10.8		8.4	-	12	6	11	10	10.4	8.4	11.4	10.6	11.2	12.6	10	114	12.2					
	SEE MARKS(80	COS	13.2	10.6	13.6	10.8	-	8.4		21		=	2	10.4	8.4	11.4	10.6	11.2	12.6	10.	11.4	12.2			t		ſ
SES	SEEA	COD	13.2	10.6	13.6	10.8	8	8.4	8	12	6	=	10	10.4	8.4	11.4	10.6	11.2	12.6	10	11.4	12.2		-		T	t
O&MSES		C01-11	13.2	10.6	13.6	10.8		8.4		12	6	11	10	10.4	8.4	11.4	10.6	112	12.6	10	11.4	12.2					ľ
	(8 M)	COSE	-	-	-	-	-	1	-	-	-	-		-	-	-	-	-	-	-	-	-			F		ľ
Subject	QUIZ(5 M	00	-	-	-	1	-	-	-	-	-	-	1	-	-	-	1	-	-	1	-	1					
Sal	MENT	ŝ	1	-	-	-	-	-	-	1	-	-	1	-	1	-	1	1	1	1	-	1					
		C02	1	-	-	1	-	1	-	1	-	-	-1	-	-		-	1	-	1	-	1					
20	ASSIGNE	000	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
rength	IA TEST 3(15M)	COS TOTAL	11	14	15	15	13	11	14	15	15	34	14	13	14	11	34	14	14	14	14	34					
Total strength	TEST	-	-	2	~	2	9	~	~	2	80	~	2	4	~	ø	1	~	2	2	~	9					
-	IA	I COS	9	~	=	=	~	9	~	-	2	2	2	~	~	s	2	*	2	~	2	8					
	(JSNI)	TOTAL	13	14	15	15	11	13	14	15	15	14	14	n	2	11	14	14	14	14	14	14					
SEM VIII	IA TEST 2(15M)	100	2	× .	~	*	9	2	1	1	10	2	1	9	-	9	1	1	7	3	1	9					
SEM	-	003	9	4	-	8	2	9	1	40	7	1	1	1	~	s	4	1	7		4	00					
	(INSI)	CO1 POTAL CO3	13	14	15	15	13	13	14	15	15	14	14	11	14	11	14	14	14	34	34	14					
2018-19	IA TEST I(15M)	-	1	2	2	2	9	4	2	2	-	1	2	9	-	9	5	1	7	7	2	9					
1	LAT	ē	9	2		8	2	9	2	86	7	1	1	1	+	un.	7	7	1	7	1						
Academic year	SEMI-VIII	USN	15V14EE006	15V156E003	15V156E007	15V15EE008	15V15EE012	15V15EE013	15V15EE015	15V15EE017	15V15EE019	15V15EE020	15V156E024	15V156E025	1SV156E032	15V15EE033	1SV15EE035	15V15EE036	15V15EE037	15V16EE401	15V16EE405	15V16EE409					

Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

1.1 s, PRINCIPAL SIET., TUMAKUPU 6. 6. 7.71 45

DEPARTMENT OF EEE

	SUBJECT	Basic Electrical Engineering	SUBJECT CODE	18ELE13/23
1	SUBJECT	Basic Electrical Engineering	SUBJECT CODE	18ELE13/23

COURSE OUTCOME

CO1	Understand the dc circuits and electrical laws.
CO2	Apply the basic electrical laws to solve ac and dc circuits
CO3	Discuss the construction and operation of various electrical machines
CO4	Identify suitable electrical machines for practical implementations
C05	Explain the concept of electrical transmission and distribution , electricity billing, circuit protective devices and personal safety measures.

PROGRAM OUTCOME

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G - H Rome Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Techn 1999 TUMKUR-572106

PRINCIPAL

SIET., TUMAHURU

COLLEGE		SHR	DEVI	INST	TUTE	OF EN	GIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	E	UMAB	AI	8	2						
BRAN	СН		I	CEE		А	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	ŕũ.	1	SECTIO	N		A& B	
SUBJECT		Bas	ic Electi	rical En	gineer	ing		SUBJE	CT C	DDE	18ELE	13/23
CO & PO M	APPIN	NG ·	S.				- 20					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	3	2	1		•	1	1	1		•	•	-1
CO2	3	3	2	1	•	1	0	0	•		•	1
CO3	3	2	1	1	•	1	1	1	•	•	•	1
CO4	3	2	2	1	-	1	1	T	•	•		1
CO5	3	1	2		•	2	1	1	•		1	1
AVERAGE	3	2	1.6	1	-	1.2	0.8	0.8	•	-	1	1
						OVE	RAL	L MAP	PING	OF SUI	BJECT	1.37

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	61.86	2.00	1.33	0.66	1112		0.66	0.66	0.66				0.66
CO2	66.73	2.19	2.19	1.46	0.73		0.73						0.73
CO3	67.76	1.87	1.25	0.62	0.62	1	0.62	0.62	0.62				0.62
CO4	55.32	1.77	1.18	1.18	0.59		0.59	0.59	0.59				0.59
CO5	49.85	1.89	0.63	1.26			1.26	0.63	0.63	-		0.63	0.63
AVERAGE	62.76	1.944	1.44	1.03	0.64		0.77	0.625	0.625			0.63	0.646
to sales		a li	15 21	SIL 1	1840		IN THE	FIN	AL AT	TAINN	MENT I	EVEL	1.12

G. U. Rowicz Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

4.

PRINCIPAL SIET., TUMAKURU,

Academic year	201	8-19		SEM	11 -	1	Te	tal stre	ength	83		Su	bject	BASIC	ELEC	TRICA	L ENGO		Subje	et Code	185	LE23		1.1					1	
EMILSEC: A&B	IAT	EST	1(30M)	IA	TEST 2	2(30M)	IAT	EST 3	(30M)	ASS	IGNE	MENT	/QUIZ	(10 M)		SEE	MARE	CS(60)			Fotal Cos	ATTAI	MENT			% of in	dividua	I CO	-	SEE Tot
USN	C01	C01	TOTAL	CO2	cos	TOTA	L CO4	CO5	TOTAL	COL	CO2	C03	C04	COS	CO1-1	C02	C03	COI	CO5	CO1=29	C02-44	CO3=29	CO4-29	CO5-25	CO1	C02	CO3	C04	CO5	60M
15V18CV001	8	8	16	4	5	9	4	4	8	2	1	2	1	2	2.4	2.4	2.4	2.4	2.4	12.4	15.4	9.4	7.4	8,4	42.8	35.0	32.4	25.5	29.0	12
15V18CV002	10	10	20	10	13	23	4	0	4	2	2	2	2	2	3.4	3.4	3.4	3.4	3.4	15.4	25.4	18.4	9.4	5.4	53.1	57.7	63.4	32.4	18.6	17
15V18CV003	14	13	27	14	14	28	10	12	22	2	2	2	2	2	6.6	6.6	6.6	6.6	6.6	22.6	35.6	22.6	18.6	20.6	77.9	80.9	77.9	64.1	71.0	33
15V18CV004	10	5	15	14	13	27	9	11	20	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	16.2	25.2	19.2	15.2	17.2	55.9	57.3	66.2	52.4	59.3	21
15V18CV005	7	3	10	10	9	19	4	4	8	2	2	2	2	2	2.2	2.2	2.2	2.2	2.2	11.2	17.2	13.2	8.2	8.2	38.6	39.1	45.5	28.3	28.3	11
15V18CV007	10	15	25	14	13	. 27	7	6	13	2	2	2	2	2	4.4	-4,4	4.4	4.4	4.4	16.4	35.4	19.4	13.4	12.4	56.6	80.5	66.9	46.2	42.8	22
15V18CV008	10	9	19	10	13	23	10	9	19	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	16.8	25.8	19.8	16.8	15.8	57.9	58.6	68.3	57.9	54.5	24
15V18CV009	10	7	17	10	11	21	4	3	7	2	2	2	2	2	5,2	5.2	5.2	5.2	5.2	17.2	24.2	18.2	11.2	10.2	59.3	55.0	62.8	38.6	35.2	26
15V18CV010	0	0	0	10	8	18	5	5	10	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	6.8	16.8	14.8	11.8	11.8	23.4	38.2	51.0	40.7	40.7	24
15V18CV011	10	8	18	14	14	28	10	8	18	2	2	2	2	2	7.6	7.6	7.6	7.6	7.6	19.6	31.6	23.6	19.6	17.6	67.6	71.8	81.4	67.6	60.7	38
15V18CV012	5	5	10	7	7	14	7	6	13	2	2	2.	2	2	4.2	4.2	4.2	4.2	4.2	11.2	18.2.	13.2	13.2	12.2	38.6	41.4	45.5	45.5	42.1	21
15V18CV013	10	12	22	15	15	30	10	9	19	2	2	2	2	2	8.4	8.4	8.4	8.4	8.4	20.4	37.4	25.4	20.4	19.4	70.3	85.0	87.6	70.3	66.9	42
15V18CV014	10	12	22	-	15	30	-	6	16	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	16.8	33.8	21.8	16.8	12.8	57.9	76.8	75.2	57.9	44.1	24
and the second second second second				15			10				_		2	2			-		-				-			the second second	and the second	and a state of the		2.0
15V18CV015	10	11	21	12	12	24	-	8	15	2	2	2			5.8	5.8	5.8	5.8	5.8	17.8	30.8	19.8	14.8	15.8	61.4	70.0	68.3	51.0	54.5	29
15V18CV016	1	0	1	10	11	21	3	3	6	2	2	2	2	2	2.6	2.6	2.6	2.6	2.6	5.6	14.6	15.6	7.6	7.6	19.3	33.2	53.8		26.2	1 1 2 2
15V18CV017	14	13	27	15	14	29	11	1	12	2	2	2	2	2	6	6	6	6	6	22	36	22	19	9	75.9	81.8	75.9	65.5	31.0	30
SV18CV018	10	15	25	14	14	28	10	12	22	2	2	2	2	2	9.6	9.6	9.6	9.6	9.6	21.5	40.6	25.6	21.6	23.6	74.5	92.3	88.3	74.5	81.4	48
1SV18CV019	10	8	18	14	15	29	10	3	13	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	18.4	30.4	23.4	18.4	11.4	63.4	69.1	80.7	63.4	39.3	32
LSV1BCV020	9	6	15	10	8	18	9	6	15	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	17.4	24.4	16.4	17.4	14.4	60.0	55.5	56.6	60.0	49.7	32
5V18CV021	9	4	13	10	7	17	2	0	2	2	2	2	2	2	0.6	0.6	0.6	0.6	0.6	11.6	16.6	9.6	4.5	2.6	40.0	37.7	33.1	15.9	9.0	3
SV18CV023	10	13	23	12	17	17	7	4	11	2	2	2	2	2	5	6	6	6	6	18	31	15	15	12	62.1	70.5	51.7	51.7	41,4	30
SV18CV024	10	11	21	10	15	25	7	0	7	2	2	2	2	2	4.4	4.4	4.4	4,4	4.4	16.4	27.4	21.4	13.4	6.4	56.6	62.3	73.8	46.2	22.1	22
SV18CV025	11	8	19	13	11	24	10	5	15	2	2	2	2	2	3.4	3.4	3.4	3,4	3.4	16.4	26.4	16.4	15.4	10.4	56.6	60.0	56.6	53.1	35.9	17
ISV18CV026	10	14	24	10	15	25	9	8	17	2	2	2	2	2	5.6	5.6	5.6	5.6	5.6	17.6	31.6	22.6	16.6	15.6	60.7	71.8	77.9	57.2	53.8	28
SV18CV027	10	7	17	14	14	28	8	9	17	2	2	2	2	2	7.8	7.8	7.8	7.8	7,8	19.8	30.8	23.8	17.8	18.8	68.3	70.0	82.1	61.4	64.8	39
SV18CV028	11	9	20	14	14	28	9	6	15	2	2	2	2	2	6.8	6.8	6.8	6.8	6.8	19.8	31.8	22.8	17.8	14.8	68.3	72.3	78.6	61.4	51.0	34
5V18CV029	11	5	16	10	11	21	7	2	- 9	2	2	2	2	2	4.4	4,4	4.4	4.4	4.4	17.4	21.4	17.4	13.4	8,4	60.0	48.6	60.0	46.2	29.0	22
SV18CV030	10	8	18	10	9	- 19	6	9	15	2	2	2	2	2	8.8	8.8	8.8	8.8	8.8	20.8	28.8	19.8	16.8	19.8	71.7	65.5	68.3	57.9	68.3	44
15V18CV031	7	7	14	15	15	30	4	4	8	2	2	2	2	2	3.4	3.4	3.4	3.4	3.4	12.4	27.4	20.4	9.4	9.4	42.8	62.3	70,3	32.4	32.4	17
LSV18CV032	8	8	16	10	8	18	4	5	9	2	2	2	2	2	3	3	3	3	3	13	23	13	9	10	44.8	\$2.3	44.8	31.0	34.5	15
15V18CV033	10	7	17	10	11	21	6	6	12	2	2	2	2	2	4.6	4.6	4.6	4.6	4,6	16.6	23.6	17.6	12.6	12.6	57.2	53.6	60.7	43.4	43.4	23
LSV18CV034	5	5	10	7	6	13	5	4	9	2	. 2	2	2	2	3.2	3.2	3.2	3.2	3.2	10.2	17.2	11.2	10.2	9.2	35.2	39.1	38.6	35.2	31.7	16
LSV18CV035	9	9	18	11	11	22	7	0	7	2	2	2	2	1	2.8	2.8	2.8	2.8	2.8	13.8	24.8	15.8	11.8	3.8	47.6	56.4	54.5	40,7	13.1	14
SV18CV036	10	13	23	15	15	30	15	14	29	2	2	2	2	2	7.4	7.4	7.4	7.4	7,4	19.4	37.4	24.4	24.4	23.4	66.9	85.0	84.1	84.1	80.7	37
SV18CV037	10	11	21	10	11	21	6	6	12	2	2	2	2	2	5	5	5	5	5	17	28	18	13	13	58.6	63.6	62.1	44.8	44.8	25
SV18ME001	10	8	18	10	18	28	7	0	7	2	1	2	2	2	3	3	3	3	3	15	22	23	12	5	51.7	50.0	79.3	41.4	17.2	15
SV18ME002	10	12	22	15	15	30	14	15	29	2	2	2	2	2	7.6	7.6	7.6	7.5	7.6	19.6	36.6	24.6	23.6	24.6	67.6	83.2	84.8	81.4	84.8	38
SV18ME003	10	8	18	14	13	27	10	4	14	2	2	2	2	2	6	6	6	6	.6	18	30	21	18	12	62.1	68.2	72.4	62.1	41.4	30
5V18ME004	12	14	26	14	14	28	8	-8	16	2	2	2	2	2	1.66	1.66	1.66	1.66	1.65	15.66	31,66	17.66	11.66	11.66	54.0	72.0	60.9	40.2	40.Z	8.3
SV18ME005	10	13	23	10	12	22	6	6	12	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	16.2	29.2	18.2	12.2	12.2	55.9	66.4	62.8	42.1	42.1	21
5V18ME007	10	9	19	14	13	27	10	7	17	2	2	2	2	2	2.8	2.8	2.8	2.8	2.8	14.8	27.8	17.8	14.8	11.8	51.0	63.2	61.4	51.0	40.7	14
5V18ME008	11	15	26	10	9	19	7	6	13	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	17.2	31.2	15.2	13.2	12.2	59.3	70.9	52.4	45.5	42.1	21
SV18ME009	10	9	19	10	8	18	5	5	10	2	2	2	2	2	3.2	3.2	3.2	3.2	3.2	15.2	24.2	13.2	10.2	10.2	52.4	55.0	45.5	35.2	35.2	16
SV18MED1D	10	15	25	14	13	27	10	4	14	2	2	2	2	2	5.2	5.2	5.2	5.2	5.2	17.2	36.2	20.2	17.2	11.2	59.3	82.3	69.7	59.3	38.6	26
SV18ME011	10	9	19	10	4	14	7	0	7	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	16.2	25.2	10.2	13.2	6.2	55.9	57.3	35.2	45.5	21.4	21
SV18ME012	9	6	15	10	11	21	5	4	9	2	2	2	2	2	2.8	2.8	2.8	2.8	2.8	13.8	20.8	15.8	9.8	8.8	47.6	47.3	54.5	33.8	30.3	14
5V18ME013	10	12	22	10	13	23	10	8	- 18	2	2	2	2	2	5	5	5	5.	5	17	29	20	17	15	58.6	65.9	69.0	58.6	51.7	25
SV18EC001	10	7	17	10	12	22	10	5	15	2	2.	2	2	2	5.8	5.8	5.8	5.8	5.8	17.8	24.8	19.8	17.8	12.8	61.4	56.4	68.3	61.4	44.1	29
SV18EC002	15	15	30	15	15	30	14	14	28	2	2	2	2	2	10.2	10.2	10.2	10.2	10.2	27.2	42.2	27.2	26.2	26.2	93.8	95.9	93.8	90.3	90.3	51
15V18EC002	10	8	18	6	6	12	7	0	7	2	2	2	2	2	2	20.6	2	2	2	14	18	10.	11	4	48.3	40.9	34.5	37.9	13.8	10

15V18EC004	9	11	20	15	14	29	10	13	23	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	17.4	34.4	22.4	18.4	21.4	60.0	78.2	77.2	63.4	73.8	32	1
15V18EC005	15	14	29	15	14	29	10	10	20	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	23.4	37.4	22.4	18.4	18,4	80.7	85.0	77.2	63.4	63.4	32	. 6
15V18EC006	15	15	30	15	15	30	10	14	24	2	2	2	2	2	7.6	7.6	7,6	7.6	7.6	24.6	39.6	24.6	19.6	23.6	84.5	90.0	84.8	67.6	81.4	38	1
15V18EC007	15	14	29	15	14	29	14	10	24	2	2	2	2	2	8.4	8.4	8.4	8.4	8.4	25.4	39,4	24.4	24.4	20.4	87.6	89.5	84.1	84.1	70.3	42	1
LSV18EC008	15	11	26	14	14	28	9	5	14	2	2	2	2	2	8.6	8.6	8.6	8.6	8.6	25.6	35.6	24.6	19.6	15.6	88.3	80.9	84.8	67.6	53.8	43	1
SV18EC009	10	11	21.	15	14	29	10	15	25	2	2	2	2	2	7.6	7.6	7.6	7.6	7.6	19.6	35.6	23.6.	19.6	24.6	67.6	80.9	81.4	67.6	84.8	38	
SV18EC010	11	11	22	13	13	26	7	7	14	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	17.8	30.8	19.8	13.8	13.8	61.4	70.0	68.3	47.6	47.6	24	1.1
SV18EC011	14	14	28	15	15	30	10	10	20	2	2	2	2	2	9	9	9	9	9	25	40	26	21	21	86.2	90.9	89.7	72.4	72.4	45	
SV18EC012	10	- 8'	18	13	13	26	9	9	18	2	2	2	2	2	7.8	7.8	7.8	7.8	7.8	19.8	30.8	22.8	18.8	18.8	68.3	70.0	78.6	64.8	64.8	39	
SV18EC013	15	15	30	15	15	30	14	15	29	2	2	2	2	2	11.4	11.4	11.4	11,4	11.4	28.4	43.4	28.4	27.4	28.4	97.9	98.6	97.9	94.5	97.9	57	- 1
SV18EC014	10	13	23	14	15	29	10	10	20	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	18.4	35,4	23.4	18.4	18.4	63.4	80.5	80.7	63.4	63.4	32	
5V18EC016	14	15	29	15	15	30	14	15	29	2	2	2	2	2	8	8	8	8	8	24	40	25	24	25	82.8	90.9	86.2	82.8	86.2	40	
SV18EC017	7	9	16	10	5	15	5	D	5	2	2	2	2	2	3.4	3.4	3.4	3.4	3.4	12.4	24.4	10.4	10.4	5.4	42.8	55.5	35.9	35.9	18.6	17	
SV18EC018	10	14	24	14	15	29	10	5 -	16	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	16.2	34.2	21.2	16.2	12.2	55.9	77.7	.73.1	55.9	42.1	21	
SV18EC019	12	12	24	10	14	24	10	5	15	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	20.4	30.4	22.4	18.4	13.4	70.3	69.1	77.2	63.4	46.2	32	
SV18EC020	10	13	23	10	14	24	11	11	22	2	2	2	2	2	9.4	9.4	9.4	9.4	9.4	21.4	34.4	25.4	22.4	22.4	73.8	78.2	87.6	77.2	.77.2	47	
SV18EC021	12	10	22	14	14	28	11	11	22	2	2	2	2	2	5.8	5.8	5.8	5.8	5.8	19.8	31.8	21.8	18.8	18.8	68.3	72.3	75.2	64.8	64.8	29	
SV18EC022	11	10	21	14	13	27	10	10	20	2	2	2	2	2	5.4	5,4	5.4	5.4	5.4	18.4	31.4	20.4	17.4	17.4	63.4	71.4	70.3	50.0	60.0	27	
SV18EC023	15	10	25	14	14	28	7	7	14	2	2	2	2	2	5.2	5.2	5.2	5.2	5.2	22.2	31.2	21.2	14.2	14.2	76.6	70.9	73.1	49.0	49.0	26	
5V18EC024	11	10	21	9	9	18	9	9	18	2	2	2	2	2	5.4	5.4	5.4	5.4	5.4	18.4	26.4	16.4	16.4	16.4	63.4	60.0	56.6	56.6	56.6	27	
SV18EE001	10	9	19	11	11	22	5	4	9	2	2	2	2	2	6.8	6.8	6.8	6.8	6.8	18.8	28.8	19.8	13.8	12.8	64.8	65.5	68.3	47.6	44.1	34	
5V18EE002	14	13	27	14	13	27	10	8	18	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	20.8	33.8	19.8	16.8	14.8	71.7	76.8	68.3	57.9	51.0	24	
SV18EE003	10	7	17	14	15	29	10	3	13	2	2	2	2	2	5.2	5.2	5.2	5.2	5.2	17.2	28.2	22.2	17.2	10.2	59.3	64.1	76.5	59.3	35.2	26	
SV18EE004	15	11	26	11	15	26	10	6	16	2	2	2	2	2	7.2	7.2	7.2	7.2	7.2	24.2	31.2	24.2	19.2	15.2	83.4	70.9	83.4	66.2	52.4	36	
5V18EE005	10	8	18	8	8	16	6	6	12	2	2	2	2	2	в	3	3	3	3	15	21	13	11	11	51.7	47.7	44.8	37.9	37.9	15	
15V18EE006	15	8	23	15	15	30	14	14	28	2	2	2	2	2	7.6	7.6	7.6	7.6	7.6	24.6	32.6	24.6	23.6	23.6	84.8	74.1	84.8	81.4	81.4	38	
SV18EE007	15	4	19	9	10	19	10	12	22	2	2	2	2	2	6	6	- 6	6	6	23	21	18	18	20	79.3	47.7	62.1	62.1	69.0	30	
SV18EED08	10	11	21	10	11	21	4	4	8	2	2	2	2	2	6	6	6	ő.	6	18	29	19	12	12	62.1	65.9	65.5	41.4	41.4	30	
SV18EE009	10	12	22	14	13	27	15	15	30	2	1	2	2	2	7.6	7.6	7.6	7.6	7.6	19.6	34.6	22.6	24.6	24.6	67.6	78.6	77.9	84.8	84.8	38	
SV18EE010	13	13	26	11	+15	26	10	5	15	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	19.2	30.2	21.2	16.2	11.2	66.2	68.6	73.1	55.9	38.6	21	
SV18EE011	10	-11	21	11	10	21	10	9	19	2	2	2.	2	2	4.2	4.2	4.2	4.2	4.2	16.2	28.2	16.2	16.2	15.2	55.9	64.1	\$5.9	55.9	52.4	21.	
SV18EE012	10	13	23	30	12	22	9	9	18	1	2	2	2	2	5.2	5.2	5.2	5.2	5.2	16.2	30.2	.19.2	16.2	16.2	55.9	68.6	66.2	55.9	55.9	26	
SV18EE013	10	10	20	10	13	23	9	9	18	2	2	2	1	2	4.8	4.8	4.8	4.8	4.8	16.8	26.8	19.8	14.8	15.8	57.9	60.9	68.3	51.0	54.5	24	
									1.1.1.1																			1			
100 P																									Sec. Por				Section 2	4.002	
										0.0									-		1				61.86	66.73	67.76	55.1	49.857	27.4	
																														45.7	
			1.00		-														1.1												
					1														-			1655									
																														1	
																				-									-		
					() ()						1.1			100						1.00									-	1	

ų.

6. 1 Rome

N.R.m.ton

1.00

ε.

· PRINCIPAL SIET. TUMAKURU

DEPARTMENT OF EEE

SUBJECT Basic Electrical Engineering	SUBJECT CODE	18ELE13/23	
--------------------------------------	--------------	------------	--

COURSE OUTCOME

CO1	Understand the dc circuits and electrical laws.
CO2	Apply the basic electrical laws to solve ac and dc circuits
CO3	Discuss the construction and operation of various electrical machines
CO4	Identify suitable electrical machines for practical implementations
C05	Explain the concept of electrical transmission and distribution , electricity billing, circuit protective devices and personal safety measures.

PROGRAM OUTCOME

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

G - H Rome Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Techn 1909 TUMKUR-572105.

PRINCIPAL

SIET., TUMARURU.

COLLEGE		SHR	DEVI	INST	TUTE	OF EN	GIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	E	UMAB	AI	8	2						
BRAN	СН		I	CEE		A	CAD	EMIC Y	EAR		2018	-19
COURSE	B.	E	SEM	ESTE	R	ŕũ.	1	SECTIO	N		A& B	
SUBJECT	-	Bas	ic Electi	rical En	gineer	ing		SUBJE	CT C	DDE	18ELE	13/23
CO & PO M	APPIN	NG ·	S.				- 20					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	3	2	1		•	1	1	1		•	•	-1
CO2	3	3	2	1	•	1	0	0	•		•	1
CO3	3	2	1	1	•	1	1	1	•	•	•	1
CO4	3	2	2	1	-	1	1	T	•	•		1
CO5	3	1	2		•	2	1	1	•		1	1
AVERAGE	3	2	1.6	1	-	1.2	0.8	0.8	•	-	1	1
						OVE	RAL	L MAP	PING	OF SUI	BJECT	1.37

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	61.86	2.00	1.33	0.66	1112		0.66	0.66	0.66				0.66
CO2	66.73	2.19	2.19	1.46	0.73		0.73						0.73
CO3	67.76	1.87	1.25	0.62	0.62	1	0.62	0.62	0.62				0.62
CO4	55.32	1.77	1.18	1.18	0.59		0.59	0.59	0.59				0.59
CO5	49.85	1.89	0.63	1.26			1.26	0.63	0.63	-		0.63	0.63
AVERAGE	62.76	1.944	1.44	1.03	0.64		0.77	0.625	0.625			0.63	0.646
to sales		a li	15 21	SIL 1	1840		IN THE	FIN	AL AT	TAINN	MENT I	EVEL	1.12

G. U. Rowicz Head of the Department Electrical & Electronics Engineering Shridevi Institute of Engineering & Technology TUMKUR-572106.

4.

PRINCIPAL SIET., TUMAKURU,

Academic year	201	8-19		SEM	11 -	1	Te	tal stre	ength	83		Su	bject	BASIC	ELEC	TRICA	L ENGO		Subje	et Code	185	LE23		1.1					1	
EMILSEC: A&B	IAT	EST	1(30M)	IA	TEST 2	2(30M)	IAT	EST 3	(30M)	ASS	IGNE	MENT	/QUIZ	(10 M)		SEE	MARE	CS(60)			Fotal Cos	ATTAR	MENT			% of in	dividua	I CO	-	SEE Tot
USN	C01	C01	TOTAL	CO2	cos	TOTA	L CO4	CO5	TOTAL	COL	CO2	C03	C04	COS	CO1-1	C02	C03	COI	CO5	CO1=29	C02-44	CO3=29	CO4-29	CO5-25	CO1	C02	CO3	C04	CO5	60M
15V18CV001	8	8	16	4	5	9	4	4	8	2	1	2	1	2	2.4	2.4	2.4	2.4	2.4	12.4	15.4	9.4	7.4	8,4	42.8	35.0	32.4	25.5	29.0	12
15V18CV002	10	10	20	10	13	23	4	0	4	2	2	2	2	2	3.4	3.4	3.4	3.4	3.4	15.4	25.4	18.4	9.4	5.4	53.1	57.7	63.4	32.4	18.6	17
15V18CV003	14	13	27	14	14	28	10	12	22	2	2	2	2	2	6.6	6.6	6.6	6.6	6.6	22.6	35.6	22.6	18.6	20.6	77.9	80.9	77.9	64.1	71.0	33
15V18CV004	10	5	15	14	13	27	9	11	20	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	16.2	25.2	19.2	15.2	17.2	55.9	57.3	66.2	52.4	59.3	21
15V18CV005	7	3	10	10	9	19	4	4	8	2	2	2	2	2	2.2	2.2	2.2	2.2	2.2	11.2	17.2	13.2	8.2	8.2	38.6	39.1	45.5	28.3	28.3	11
15V18CV007	10	15	25	14	13	. 27	7	6	13	2	2	2	2	2	4.4	-4,4	4.4	4.4	4.4	16.4	35.4	19.4	13.4	12.4	56.6	80.5	66.9	46.2	42.8	22
15V18CV008	10	9	19	10	13	23	10	9	19	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	16.8	25.8	19.8	16.8	15.8	57.9	58.6	68.3	57.9	54.5	24
15V18CV009	10	7	17	10	11	21	4	3	7	2	2	2	2	2	5,2	5.2	5.2	5.2	5.2	17.2	24.2	18.2	11.2	10.2	59.3	55.0	62.8	38.6	35.2	26
15V18CV010	0	0	0	10	8	18	5	5	10	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	6.8	16.8	14.8	11.8	11.8	23.4	38.2	51.0	40.7	40.7	24
15V18CV011	10	8	18	14	14	28	10	8	18	2	2	2	2	2	7.6	7.6	7.6	7.6	7.6	19.6	31.6	23.6	19.6	17.6	67.6	71.8	81.4	67.6	60.7	38
15V18CV012	5	5	10	7	7	14	7	6	13	2	2	2.	2	2	4.2	4.2	4.2	4.2	4.2	11.2	18.2.	13.2	13.2	12.2	38.6	41.4	45.5	45.5	42.1	21
15V18CV013	10	12	22	15	15	30	10	9	19	2	2	2	2	2	8.4	8.4	8.4	8.4	8.4	20.4	37.4	25.4	20.4	19.4	70.3	85.0	87.6	70.3	66.9	42
15V18CV014	10	12	22	-	15	30	-	6	16	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	16.8	33.8	21.8	16.8	12.8	57.9	76.8	75.2	57.9	44.1	24
and the second second second second				15			10				_		2	2			-		-				-			the second second	and the second	and a state of the		2.0
15V18CV015	10	11	21	12	12	24	-	8	15	2	2	2			5.8	5.8	5.8	5.8	5.8	17.8	30.8	19.8	14.8	15.8	61.4	70.0	68.3	51.0	54.5	29
15V18CV016	1	0	1	10	11	21	3	3	6	2	2	2	2	2	2.6	2.6	2.6	2.6	2.6	5.6	14.6	15.6	7.6	7.6	19.3	33.2	53.8		26.2	- CC
15V18CV017	14	13	27	15	14	29	11	1	12	2	2	2	2	2	6	6	6	6	6	22	36	22	19	9	75.9	81.8	75.9	65.5	31.0	30
SV18CV018	10	15	25	14	14	28	10	12	22	2	2	2	2	2	9.6	9.6	9.6	9.6	9.6	21.5	40.6	25.6	21.6	23.6	74.5	92.3	88.3	74.5	81.4	48
1SV18CV019	10	8	18	14	15	29	10	3	13	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	18.4	30.4	23.4	18.4	11.4	63.4	69.1	80.7	63.4	39.3	32
LSV1BCV020	9	6	15	10	8	18	9	6	15	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	17.4	24.4	16.4	17.4	14.4	60.0	55.5	56.6	60.0	49.7	32
5V18CV021	9	4	13	10	7	17	2	0	2	2	2	2	2	2	0.6	0.6	0.6	0.6	0.6	11.6	16.6	9.6	4.6	2.6	40.0	37.7	33.1	15.9	9.0	3
SV18CV023	10	13	23	12	17	17	7	4	11	2	2	2	2	2	5	6	6	6	6	18	31	15	15	12	62.1	70.5	51.7	51.7	41,4	30
SV18CV024	10	11	21	10	15	25	7	0	7	2	2	2	2	2	4.4	4.4	4.4	4,4	4.4	16.4	27.4	21.4	13.4	6.4	56.6	62.3	73.8	46.2	22.1	22
SV18CV025	11	8	19	13	11	24	10	5	15	2	2	2	2	2	3.4	3.4	3.4	3,4	3.4	16.4	26.4	16.4	15.4	10.4	56.6	60.0	56.6	53.1	35.9	17
ISV18CV026	10	14	24	10	15	25	9	8	17	2	2	2	2	2	5.6	5.6	5.6	5.6	5.6	17.6	31.6	22.6	16.6	15.6	60.7	71.8	77.9	57.2	53.8	28
SV18CV027	10	7	17	14	14	28	8	9	17	2	2	2	2	2	7.8	7.8	7.8	7.8	7,8	19.8	30.8	23.8	17.8	18.8	68.3	70.0	82.1	61.4	64.8	39
SV18CV028	11	9	20	14	14	28	9	6	15	2	2	2	2	2	6.8	6.8	6.8	6.8	6.8	19.8	31.8	22.8	17.8	14.8	68.3	72.3	78.6	61.4	51.0	34
5V18CV029	11	5	16	10	11	21	7	2	- 9	2	2	2	2	2	4.4	4,4	4.4	4.4	4.4	17.4	21.4	17.4	13.4	8,4	60.0	48.6	60.0	46.2	29.0	22
SV18CV030	10	8	18	10	9	- 19	6	9	15	2	2	2	2	2	8.8	8.8	8.8	8.8	8.8	20.8	28.8	19.8	16.8	19.8	71.7	65.5	68.3	57.9	68.3	44
15V18CV031	7	7	14	15	15	30	4	4	8	2	2	2	2	2	3.4	3.4	3.4	3.4	3.4	12.4	27.4	20.4	9.4	9.4	42.8	62.3	70,3	32.4	32.4	17
LSV18CV032	8	8	16	10	8	18	4	5	9	2	2	2	2	2	3	3	3	3	3	13	23	13	9	10	44.8	\$2.3	44.8	31.0	34.5	15
15V18CV033	10	7	17	10	11	21	6	6	12	2	2	2	2	2	4.6	4.6	4.6	4.6	4,6	16.6	23.6	17.6	12.6	12.6	57.2	53.6	60.7	43.4	43.4	23
LSV18CV034	5	5	10	7	6	13	5	4	9	2	. 2	2	2	2	3.2	3.2	3.2	3.2	3.2	10.2	17.2	11.2	10.2	9.2	35.2	39.1	38.6	35.2	31.7	16
LSV18CV035	9	9	18	11	11	22	7	0	7	2	2	2	2	1	2.8	2.8	2.8	2.8	2.8	13.8	24.8	15.8	11.8	3.8	47.6	56.4	54.5	40,7	13.1	14
SV18CV036	10	13	23	15	15	30	15	14	29	2	2	2	2	2	7.4	7.4	7.4	7.4	7,4	19.4	37.4	24.4	24.4	23.4	66.9	85.0	84.1	84.1	80.7	37
SV18CV037	10	11	21	10	11	21	6	6	12	2	2	2	2	2	5	5	5	5	5	17	28	18	13	13	58.6	63.6	62.1	44.8	44.8	25
SV18ME001	10	8	18	10	18	28	7	0	7	2	1	2	2	2	3	3	3	3	3	15	22	23	12	5	51.7	50.0	79.3	41.4	17.2	15
SV18ME002	10	12	22	15	15	30	14	15	29	2	2	2	2	2	7.6	7.6	7.6	7.5	7.6	19.6	36.6	24.6	23.6	24.6	67.6	83.2	84.8	81.4	84.8	38
SV18ME003	10	8	18	14	13	27	10	4	14	2	2	2	2	2	6	6	6	6	.6	18	30	21	18	12	62.1	68.2	72.4	62.1	41.4	30
5V18ME004	12	14	26	14	14	28	8	-8	16	2	2	2	2	2	1.66	1.66	1.66	1.66	1.65	15.66	31,66	17.66	11.66	11.66	54.0	72.0	60.9	40.2	40.Z	8.3
SV18ME005	10	13	23	10	12	22	6	6	12	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	16.2	29.2	18.2	12.2	12.2	55.9	66.4	62.8	42.1	42.1	21
5V18ME007	10	9	19	14	13	27	10	7	17	2	2	2	2	2	2.8	2.8	2.8	2.8	2.8	14.8	27.8	17.8	14.8	11.8	51.0	63.2	61.4	51.0	40.7	14
5V18ME008	11	15	26	10	9	19	7	6	13	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	17.2	31.2	15.2	13.2	12.2	59.3	70.9	52.4	45.5	42.1	21
SV18ME009	10	9	19	10	8	18	5	5	10	2	2	2	2	2	3.2	3.2	3.2	3.2	3.2	15.2	24.2	13.2	10.2	10.2	52.4	55.0	45.5	35.2	35.2	16
SV18MED1D	10	15	25	14	13	27	10	4	14	2	2	2	2	2	5.2	5.2	5.2	5.2	5.2	17.2	36.2	20.2	17.2	11.2	59.3	82.3	69.7	59.3	38.6	26
SV18ME011	10	9	19	10	4	14	7	0	7	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	16.2	25.2	10.2	13.2	6.2	55.9	57.3	35.2	45.5	21.4	21
SV18ME012	9	6	15	10	11	21	5	4	9	2	2	2	2	2	2.8	2.8	2.8	2.8	2.8	13.8	20.8	15.8	9.8	8.8	47.6	47.3	54.5	33.8	30.3	14
5V18ME013	10	12	22	10	13	23	10	8	- 18	2	2	2	2	2	5	5	5	5.	5	17	29	20	17	15	58.6	65.9	69.0	58.6	51.7	25
SV18EC001	10	7	17	10	12	22	10	5	15	2	2.	2	2	2	5.8	5.8	5.8	5.8	5.8	17.8	24.8	19.8	17.8	12.8	61.4	56.4	68.3	61.4	44.1	29
SV18EC002	15	15	30	15	15	30	14	14	28	2	2	2	2	2	10.2	10.2	10.2	10.2	10.2	27.2	42.2	27.2	26.2	26.2	93.8	95.9	93.8	90.3	90.3	51
15V18EC002	10	8	18	6	6	12	7	0	7	2	2	2	2	2	2	20.6	2	2	2	14	18	10.	11	4	48.3	40.9	34.5	37.9	13.8	10

15V18EC004	9	11	20	15	14	29	10	13	23	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	17.4	34.4	22.4	18.4	21.4	60.0	78.2	77.2	63.4	73.8	32	1
15V18EC005	15	14	29	15	14	29	10	10	20	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	23.4	37.4	22.4	18.4	18,4	80.7	85.0	77.2	63.4	63.4	32	. 6
15V18EC006	15	15	30	15	15	30	10	14	24	2	2	2	2	2	7.6	7.6	7,6	7.6	7.6	24.6	39.6	24.6	19.6	23.6	84.5	90.0	84.8	67.6	81.4	38	1
15V18EC007	15	14	29	15	14	29	14	10	24	2	2	2	2	2	8.4	8.4	8.4	8.4	8.4	25.4	39,4	24.4	24.4	20.4	87.6	89.5	84.1	84.1	70.3	42	1
LSV18EC008	15	11	26	14	14	28	9	5	14	2	2	2	2	2	8.6	8.6	8.6	8.6	8.6	25.6	35.6	24.6	19.6	15.6	88.3	80.9	84.8	67.6	53.8	43	1
SV18EC009	10	11	21.	15	14	29	10	15	25	2	2	2	2	2	7.6	7.6	7.6	7.6	7.6	19.6	35.6	23.6.	19.6	24.6	67.6	80.9	81.4	67.6	84.8	38	
SV18EC010	11	11	22	13	13	26	7	7	14	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	17.8	30.8	19.8	13.8	13.8	61.4	70.0	68.3	47.6	47.6	24	1.1
SV18EC011	14	14	28	15	15	30	10	10	20	2	2	2	2	2	9	9	9	9	9	25	40	26	21	21	86.2	90.9	89.7	72.4	72.4	45	
SV18EC012	10	- 8'	18	13	13	26	9	9	18	2	2	2	2	2	7.8	7.8	7.8	7.8	7.8	19.8	30.8	22.8	18.8	18.8	68.3	70.0	78.6	64.8	64.8	39	
SV18EC013	15	15	30	15	15	30	14	15	29	2	2	2	2	2	11.4	11.4	11.4	11,4	11.4	28.4	43.4	28.4	27.4	28.4	97.9	98.6	97.9	94.5	97.9	57	- 1
SV18EC014	10	13	23	14	15	29	10	10	20	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	18.4	35,4	23.4	18.4	18.4	63.4	80.5	80.7	63.4	63.4	32	
5V18EC016	14	15	29	15	15	30	14	15	29	2	2	2	2	2	8	8	8	8	8	24	40	25	24	25	82.8	90.9	86.2	82.8	86.2	40	
SV18EC017	7	9	16	10	5	15	5	D	5	2	2	2	2	2	3.4	3.4	3.4	3.4	3.4	12.4	24.4	10.4	10.4	5.4	42.8	55.5	35.9	35.9	18.6	17	
SV18EC018	10	14	24	14	15	29	10	5 -	16	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	16.2	34.2	21.2	16.2	12.2	55.9	77.7	.73.1	55.9	42.1	21	
SV18EC019	12	12	24	10	14	24	10	5	15	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	20.4	30.4	22.4	18.4	13.4	70.3	69.1	77.2	63.4	46.2	32	
SV18EC020	10	13	23	10	14	24	11	11	22	2	2	2	2	2	9.4	9.4	9.4	9.4	9.4	21.4	34.4	25.4	22.4	22.4	73.8	78.2	87.6	77,2	.77.2	47	
SV18EC021	12	10	22	14	14	28	11	11	22	2	2	2	2	2	5.8	5.8	5.8	5.8	5.8	19.8	31.8	21.8	18.8	18.8	68.3	72.3	75.2	64.8	64.8	29	
SV18EC022	11	10	21	14	13	27	10	10	20	2	2	2	2	2	5.4	5.4	5.4	5.4	5.4	18.4	31.4	20.4	17.4	17.4	63.4	71.4	70.3	50.0	60.0	27	
SV18EC023	15	10	25	14	14	28	7	7	14	2	2	2	2	2	5.2	5.2	5.2	5.2	5.2	22.2	31.2	21.2	14.2	14.2	76.6	70.9	73.1	49.0	49.0	26	
5V18EC024	11	10	21	9	9	18	9	9	18	2	2	2	2	2	5.4	5.4	5.4	5.4	5.4	18.4	26.4	16.4	16.4	16.4	63.4	60.0	56.6	56.6	56.6	27	
SV18EE001	10	9	19	11	11	22	5	4	9	2	2	2	2	2	6.8	6.8	6.8	6.8	6.8	18.8	28.8	19.8	13.8	12.8	64.8	65.5	68.3	47.6	44.1	34	
5V18EE002	14	13	27	14	13	27	10	8	18	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8	20.8	33.8	19.8	16.8	14.8	71.7	76.8	68.3	57.9	51.0	24	
SV18EE003	10	7	17	14	15	29	10	3	13	2	2	2	2	2	5.2	5.2	5.2	5.2	5.2	17.2	28.2	22.2	17.2	10.2	59.3	64.1	76.5	59.3	35.2	26	
SV18EE004	15	11	26	11	15	26	10	6	16	2	2	2	2	2	7.2	7.2	7.2	7.2	7.2	24.2	31.2	24.2	19.2	15.2	83.4	70.9	83.4	66.2	52.4	36	
5V18EE005	10	8	18	8	8	16	6	6	12	2	2	2	2	2	в	3	3	3	3	15	21	13	11	11	51.7	47.7	44.8	37.9	37.9	15	
15V18EE006	15	8	23	15	15	30	14	14	28	2	2	2	2	2	7.6	7.6	7.6	7.6	7.6	24.6	32.6	24.6	23.6	23.6	84.8	74.1	84.8	81.4	81.4	38	
SV18EE007	15	4	19	9	10	19	10	12	22	2	2	2	2	2	6	6	- 6	6	6	23	21	18	18	20	79.3	47.7	62.1	62.1	69.0	30	
5V18EE008	10	11	21	10	11	21	4	4	8	2	2	2	2	2	6	6	6	ő.	6	18	29	19	12	12	62.1	65.9	65.5	41.4	41.4	30	
SV18EE009	10	12	22	14	13	27	15	15	30	2	1	2	2	2	7.6	7.6	7.6	7.6	7.6	19.6	34.6	22.6	24.6	24.6	67.6	78.6	77.9	84.8	84.8	38	
SV18EE010	13	13	26	11	+15	26	10	5	15	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	19.2	30.2	21.2	16.2	11.2	66.2	68.6	73.1	55.9	38.6	21	
SV18EE011	10	-11	21	11	10	21	10	9	19	2	2	2.	2	2	4.2	4.2	4.2	4.2	4.2	16.2	28.2	16.2	16.2	15.2	55.9	64.1	\$5.9	55.9	52.4	21.	
SV18EE012	10	13	23	30	12	22	9	9	18	1	2	2	2	2	5.2	5.2	5.2	5.2	5.2	16.2	30.2	.19.2	16.2	16.2	55.9	68.6	66.2	55.9	55.9	26	
SV18EE013	10	10	20	10	13	23	9	9	18	2	2	2	1	2	4.8	4.8	4.8	4.8	4.8	16.8	26.8	19.8	14.8	15.8	57.9	60.9	68.3	51.0	54.5	24	
																												1			
100 P																									Sec. Por				Section 2	4.002	
										0.0									-		1				61.86	66.73	67.76	55.1	49.857	27.4	
																														45.7	
			1.00		-														1.1												
					1														-			1655									
																														1	
																				-									-		
					() ()						1.1			100						1.00									-	1	

ų.

6. 1 Rome

N.R.m.ton

1.00

ε.

· PRINCIPAL SIET. TUMAKURU