ODD SEM 2023-24

DEPARTMENT OF ME

SUBJECT CONTROL ENGINEERING	SUBJECT CODE	18ME71
-----------------------------	--------------	--------

COURSE OUTCOME

CO1	Identify the control system and its types, control actions
CO2	Construct the system governing equations for physical models(Electrical, Thermal, Mechanical, Electro Mechanical
CO3	Analyze the gain of the system using block diagram and signal flow graph
CO4	Evaluate the stability of Control system in complex domain and frequency domain
CO5	Employ state equations to study the Bode's plot

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF E	NGIN	EERIN	G & T	ECHN(DLOGY	,	
FACULTY	NAM	Œ	K P CHANDRAIAH										
BRAN	СН]	ME		A	CADI	EMIC Y	EAR		2023	-24	
COURSE	В.	E	SEM	ESTE	R	VII	S	ECTIO	N				
SUBJECT		CONTROL ENGINEERING SUBJ							CT CC	ODE	18ME71		
CO & PO M	APPIN	NG											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2												
CO2	2	2	1										
CO3	2	2											
CO4	2	2	1										
CO5	1	2	1										
AVERAGE	1.8	2	1										
7111						OVE	RALI	L MAPI	PING	OF SUE	JECT	1.6	

COAN	D PO A	IAINI	MENI										
	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	58.9	1.17											
· CO2	75.6	1.51	1.51	0.75									
CO3	60.6	1.21	1.21									352	
CO4	66.8	1.33	1.33	0.66									
CO5	57.7	0.57	1.15	0.57									
AVERAGE	63.92	1.15	1.04	0.66									
								FINA	AL AT	ΓAINN	MENT L	EVEL	0.75

FACULTY

HODE

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF ME

SUBJECT	COMPUTER AIDED DESIGN AND MANUFACTURING	SUBJECT CODE	18ME72
---------	--	--------------	--------

COURSE OUTCOME

CO1	Define automation, CIM,CAD,CAM & explain differences between these concepts. Solve simple problems of transformations of entities on computer screen
CO2	Explain the basics of automated manufacturing industries through mathematical models and analyze different types of automated flow lines
CO3	Analyze the automated flowlines to reduce time and enhance productivity
CO4	Explain the use of different computer applications in manufacturing and able to prepare part program for simple jobs on CNC and Robot Programming
CO5	Visualize and appreciate the modern trends in manufacturing like additive manufacturing industry 4.0 and applications of IOT leading to smart manufacturing.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	NAM	E	RAVI KUMAR K R										
BRAN	СН		1	ME		A	CADI	EMIC Y	EAR		2023	-24	
COURSE	В.	E	SEM	R	VII	5	SECTIO	N					
SUBJECT	CC		TER A				D	SUBJE	CT CC	ODE	18Ml	E 72	
CO & PO M	APPI	NG											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2											
CO2	3	2											
CO3	3	2											
CO4	3	2											
CO5	3	2											
AVERAGE	3	2											
		lL				OVE	RAL	L MAPI	PING	OF SUE	BJECT	2.5	

COAN	DIOA		VILLIVI										
	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	62.26	1.86	1.24										
CO2	65.69	1.97	1.31										
CO3	49.10	1.47	0.98										
CO4	63.34	1.90	1.26										
CO5	48.48	1.45	0.96										
AVERAGE	57.77	1.73	1.15										
				1				FINA	AL AT	TAINN	MENT L	EVEL	1.44

Qe-FACULTY HOD

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF ME

SUBJECT	TOTAL QUALITY MANAGEMENT	SUBJECT CODE	18ME734

COURSE OUTCOME

CO1	Explain the various approaches of TQM
CO2	Infer the customer perception of quality
CO3	Analyze customer needs and perception to design feed back systems
CO4	Apply statistical tools for continuous improvement of systems
CO5	Apply the tools and technology for effective improvement of TQM

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	NAM	IE	AJAY HIREMATH											
BRAN			ME		A	CAD	EMIC Y	EAR		2023-24				
COURSE	В.	E	SEM	(ESTE)	R	VII	S	SECTIO	N		•			
SUBJECT	TOTAL QUALITY MANAG						Г	ODE	18ME734					
CO & PO M	APPI	NG						t and the second						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2													
CO2	2	2												
CO3	2	2												
CO4	2											• 1		
CO5	2	2												
AVERAGE	2	2												
						OVE	RALI	L MAPI	INC (OF SUP	IFCT	2.0		

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	64.15	1.28					224						
CO2	76.48	1.52	1.52										
CO3	53.16	1.06	1.06										
CO4	64.61	1.29											
CO5	56.72	1.13	1.13										
AVERAGE	63.02	1.25	1.23										
					2			FINA	L AT	ΓΑΙΝΝ	IENT L	EVEL	1.24

Pal

FACULTY

HOD

PRINCIPAL SIET. TUMKUR.

PRINCIPAL .

DEPARTMENT OF ME

SUBJECT	PROJECT MANAGMENT	SUBJECT CODE	18ME745

COURSE OUTCOME

CO1	Understand the selection, prioritization and initiation of individual projects and strategic role of project management.
CO2	Understand the work breakdown structure by integrating it with organization.
CO3	Understand the activities like purchasing, acquisitions, contracting, partnering and collaborations related to performing projects.
CO4	Determine project progress and results through balanced scorecard approach
CO5	Draw the network diagram to calculate the duration of the project and reduce it using crashing.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, Statistics and discrete mathematics), science, and engineering for solving Engineering problems And Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering Problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, Skills and management principles to do work as a member and leader in a team, to manage Projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve Contemporary issues and acquire lifelong learning.

NAME O COLL		E		SHR				TE OF E			NG &			
FACULTY	NAM	Œ	AJAY HIREMATH											
BRAN	СН		MECH	ANIC	AL	A	CAD		2023-24					
COURSE	B.]	E	SEM	ESTE	R	VII	5	SECTIO	N		-			
SUBJECT		PRO	JECT :	MANA	GME	NT		SUBJE	CT C	ODE	18MI	E745		
CO & PO M	APPIN	NG												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2													
CO2	2	2												
CO3	2	2												
CO4	2													
CO5	2	2												
AVERAGE	2	2												
						OVE	RALI	L MAPI	PING (OF SUE	SJECT	2.0		

	CO%	PO1	PO2	PO3	PO4	PO 5	PO 6	PO7	DO0	DOO	RC (400 CO)	PO1	
€01	64.15	1.28	102	103	104	3	U	PU/	PO8	P09	0	1	2
CO2	76.48	1.52	1.52										
CO3	53.16	1.06	1.06									encountry promitions	
CO4	64.61	1.29											
CO5	56.72	1.13	1.13										
AVERA GE	63.02	1.25	1.23										
							F	INAL	ATTA	MME	NTIE	VET	m 82

FACULTY

HOD

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF ME

SUBJECT	ENVIRONMENTAL PROTECTION & MANAGEMENT	SUBJECT CODE	18CV753
---------	---------------------------------------	--------------	---------

COURSE OUTCOME

CO1	Appreciate the elements of Corporate Environmental Management systems complying to international environmental management system standards.
CO2	Lead pollution prevention assessment team
CO3	implement waste minimization options.
CO4	Develop, Implement, maintain
CO5	Audit Environmental Management systems for Organizations.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, Statistics and discrete mathematics), science, and engineering for solving Engineering problems And Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering Problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

NAME O COLL		E		SHR				TE OF E			IG &		
FACULTY	NAM	Œ	SRILAXMI										
BRAN	CH		MECH	IANIC	AL	A	CAD	EMIC Y	YEAR		2023-24		
COURSE	B.]	E	SEM	ESTE	R	VII	5	SECTIO	N		-		
SUBJECT	ENV	IRON	MENT MANA			CTION	1&	SUBJE	CT C	ODE	18CV	7753	
CO & PO M	APPI	NG											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
COi	3	2	1	1	-	2	3	1	1	1	1	2	
CO2	3	2	1	2	-	1	1	1	1	1	-	2	
CO3	3	2	1	1	1	2	2	1	1	1	1	2	
CO4	3	2	1	1	-	2	3	1	1	1	1	2	
CO5	3	2	1	1	1	2	2	1	1	1	1	2	
AVERAGE	3	1.6	1	1.2	1	1.8	2.2	1	1	1	1	2	
						OVE	RALI	MAPI	PING (OF SUB	JECT	1.52	

7	CO%	PO1	PO2	PO3	PO4	PO5	FO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					4.7						2010	1011	1012
	62	1.86	1.24	0.62	0.6		1.24	1.86	0.62	0.62	0.62	0.62	1.24
CO2	11												
1-	66	1.98	1.32	0.66	1.3	-	0.66	0.66	0.66	0.66	0.66	-	1.32
CO3	49	1.47	0.98	0.49	0.5	0.49	0.98	0.98	0.49	0.49	0.49	0.49	0.98
CO4	63	1.89	1.26	0.63	0.6	_	1.26	1.89	0.63	0.63	0.63	0.63	1.26
CO5	48	1.44	0.96	0.48	0.5	0.48	0.96	0.96	0.48	0.48	0.48	0.48	0.96
AVERAGE	57.6	1.73	1.15	0.58	0.7	0.49	1.02	1.27	0.58	0.58	0.58	0.56	1.15
									Fin	al atta	inmen		0.86

Galadui

HOD

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF ME

SUBJECT	MECHANICS OF MATERIAL	SUBJECT CODE	BME301

COURSE OUTCOME

CO1	Understand the concepts of stress and strain in simple and compound bars.
CO2	Explain the importance of principal stresses and principal planes & Analyse cylindrical pressure vessels under various loading.
CO3	Apply the knowledge to understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.
CO4	Evaluate stresses induced in different cross-sectional members subjected to shear loads.
CO5	Apply basic equation of simple torsion in designing of circular shafts & Columns.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	Y NAM	1E	DR. NARENDRA VISWANATH											
BRAN	ICH			ME		A	CAD		2023-24					
COURSE	B.	E	SEM	ESTE	R	III	5	SECTIO	N		-			
SUBJECT		MECI	HANIC	S OF N	MATE	RIAL		SUBJE	CT C	ODE	BME	301		
CO & PO M	APPI	NG												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3												
CO2	3	3												
CO3	3	2	3											
CO4	3	3												
CO5	2	2	2											
VERAGE	2.8	2.6	2.5											

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	51.03	1.53	1.53										
CO2	60.08	1.80	1.80										
CO3	48.09	1.44	0.96	1.44									
CO4	56.42	1.69	1.69										
CO5	42.94	0.84	0.84	0.84									
AVERAGE	62.53	1.46	1.36	1.14									
·特别清			J					FINA	L ATI	AINM	ENT L	EVEL	1.32

PRINCIPAL SIET. TUMKUR.

HOD

PRINCIPAL SIET. TUMKUR.

PRINCIPAL

FACULTY

DEPARTMENT OF ME

	SUBJECT	MANUFACTURING PROCESS	SUBJECT CODE	BME302
--	---------	-----------------------	--------------	--------

COURSE OUTCOME

CO1	Describe the casting process and prepare different types of cast products. Acquire knowledge on Pattern, Core, Gating, Riser system and to use Jolt, Squeeze, and Sand Slinger Moulding machines.
CO2	Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.
CO3	Understand the Solidification process and Casting of Non-Ferrous Metals.
CO4	Describe the Metal Arc, TIG, MIG, Submerged and Atomic Hydrogen Welding processes etc. used in manufacturing.
CO5	Describe the methods of different joining processes and thermal effects in joining process.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	Y NAN	1E	RAVI	KUMA	RKR							
BRAN	NCH			ME		A	CAD	EMIC Y	EAR		2023	3-24
COURSE	B.	E	SEM	ESTE	R	III	5	SECTIO	N		•	
SUBJECT	1	MANU	JFACT	URING	G PRO	CESS		SUBJE	CT C	ODE	BME	302
CO & PO M	APPII	NG										
me and the color	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2										
AVERAGE	3	2										

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
· C01	62.26	1.86	1.24										
CO2	65.69	1.97	1.31										
CO3	49.10	1.47	0.98										
CO4	63.34	1.90	1.26										
CO5	48.48	1.45	0.96										
VERAGE	57.77	1.73	1.15										
								FINA	L ATT	AINM	ENT LI	EVEL	1.44

Der

HOD

PRINCIPA SIET. TUMKUR.

DEPARTMENT OF ME

SUBJECT	MATERIAL SCIENCE & ENGINEERING	SUBJECT CODE	BME303
---------	--------------------------------	--------------	--------

COURSE OUTCOME

CO1	Understand the atomic arrangement in crystalline materials and describe the periodic arrangement of atoms in terms of unit cell parameters.
CO2	Understand the importance of phase diagrams and the phase transformations.
CO3	Explain various heat treatment methods for controlling the microstructure.
CO4	Correlate between material properties with component design and identify various kinds of defects
CO5	Apply the method of materials selection, material data and knowledge sources for computeraided selection of materials.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- P06 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	Y NAN	1E			AJAY	HIRE	MAT	H				
BRAN	NCH			ME		A	CAD	EMIC Y	EAR		2023	-24
COURSE	В.	E	SEM	ESTE	R	III		SECTIO)N			
SUBJECT		MA	TERIA ENGI	AL SCI NEER		E &		SUBJE	CT C	ODE	BME30	3
CO & PO M	APPI	NG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2											
CO2	2	2	1									
CO3	2	2										
CO4	2	2	1									
CO5	1	2	1									
VERAGE	1.8	2	1		-							
						OVE	RALI	L MAPP	PING C	F SUB	IFCT	1.6

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	58.9	1.17											
CO2	75.6	1.51	1.51	0.75									
CO3	60.6	1.21	1.21										
CO4	66.8	1.33	1.33	0.66									
CO5	57.7	0.57	1.15	0.57									
AVERAGE	63.92	1.15	1.04	0.66									
								FINA	L ATT	AINM	ENT L	EVEL	0.75

FACULTY

HOD

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF ME

	SUBJECT	BASIC THERMODYNAMICS	SUBJECT CODE	BME304
--	---------	----------------------	--------------	--------

COURSE OUTCOME

CO1	Understand the concepts of stress and strain in simple and compound bars.
CO2	Explain the importance of principal stresses and principal planes & Analyse cylindrical pressure vessels under various loading.
CO3	Apply the knowledge to understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.
CO4	Evaluate stresses induced in different cross-sectional members subjected to shear loads.
CO5	Apply basic equation of simple torsion in designing of circular shafts & Columns.

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	Y NAN	1E	PROF	THAR	A							
BRAN	NCH			ME		A	CADI	EMIC Y	EAR		2023	3-24
COURSE	В.	E	SEM	ESTE	R	III	S	ECTIO	N		-	
SUBJECT		BASI	C THE	RMOL	YNAI	MICS		SUBJE	CT C	ODE	BME	304
CO & PO M	APPI	NG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3										
CO3	3	2	3									
CO4	3	3										
CO5	2	2	2									
VERAGE	2.8	2.6	2.5									

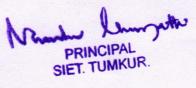
	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	51.03	1.53	1.53										
CO2	60.08	1.80	1.80										
CO3	48.09	1.44	0.96	1.44									
· CO4	56.42	1.69	1.69										
CO5	42.94	0.84	0.84	0.84									
AVERAGE	62.53	1.46	1.36	1.14									
								FINA	L ATT	AINM	ENT LI	EVEL	1.32

Shala. FACULTY HOD

PRINCIPAL PRINCIPAL TUMKUR.

DEPARTMENT OF ME

SUBJECT	WASTE HANDLING & MANAGEMENT	SUBJECT CODE	BME306D
---------	-----------------------------	--------------	---------


COURSE OUTCOME

CO1	Appreciate the elements of Corporate Environmental Management systems complying to international environmental management system standards.
CO2	Lead pollution prevention assessment team
CO3	implement waste minimization options.
CO4	Develop, Implement, maintain
CO5	Audit Environmental Management systems for Organizations.

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, Statistics and discrete mathematics), science, and engineering for solving Engineering problems And Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering Problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

NAME O COLL		E		SHR				TE OF E			IG &		
FACULTY	NAM	Œ	POOJA										
BRAN	CH		MECH	IANIC	AL	A	CAD	EMIC Y	YEAR		2022	-23	
COURSE	B.)	E	SEM	ESTE	R	III	S	SECTIO	N		•		
SUBJECT		W	ASTE I MANA			&		SUBJE	CT C	ODE	BME3	306D	
CO & PO M	APPIN	PPING											
	PO1	PO2	PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11									PO12	
CO1	3	2	1	1	-	2	3	1	1	1	1	2	
CO2	3	2	1	2	-	1	1	1	1	1	-	2	
CO3	3	2	1	1	1	2	2	1	1	1	1	2	
CO4	3	2	1	1	-	2	3	1	1	1	1	2	
CO5	3	2	1	1	1	2	2	1	1	1	1	2	
AVERAGE	3	1.6	1	1.2	1	1.8	2.2	1	1	1	1	2	
						OVE	RALI	L MAPI	PING (OF SUB	JECT	1.52	

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	62	1.86	1.24	0.62	0.6	-	1.24	1.86	0.62	0.62		0.62	1.24
CO2	66	1.98	1.32	0.66	1.3	-	0.66	0.66	0.66	0.66	0.66	-	1.32
CO3	49	1.47	0.98	0.49	0.5	0.49	0.98	0.98	0.49	0.49	0.49	0.49	0.98
CO4	63	1.89	1.26	0.63	0.6	-	1.26	1.89	0.63	0.63	0.63	0.63	1.26
CO5	48	1.44	0.96	0.48	0.5	0.48	0.96	0.96	0.48	0.48	0.48	0.48	0.96
AVERAGE	57.6	1.73	1.15	0.58	0.7	0.49	1.02	1.27	0.58	0.58	0.58	0.56	1.15
									Fin	al atta	inmen		0.86

EVEN SEM 2023-24

DEPARTMENT OF ME

SUBJECT	ENERGY ENGINEERING	SUBJECT CODE	18ME81	
---------	--------------------	--------------	--------	--

COURSE OUTCOME

CO1	Understand the construction and working of steam generators and their accessories.
CO2	Identify renewable energy sources and their utilization.
CO3	Understand principles of energy conversion
CO4	Understand principles of energy conversion from alternate sources including wind, geothermal,
CO5	Understand principles of energy conversion from alternate sources ocean, biomass, nuclear, hydel and tidal.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, Statistics and discrete mathematics), science, and engineering for solving Engineering problems And Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering Problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

NAME O				SHR	SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY, TUMAKURU									
FACULTY	NAM	E	Prof. K.P. Chandraiah											
BRAN	СН	12	MECH	ANIC	AL	A	CAD	EMIC Y	EAR		2023	-24		
COURSE	B.1	E	SEMESTER VIII SECTION -											
SUBJECT		ENE	ERGY E	ENGIN	EERI	NG	SUBJE	CT C	ODE	18M	E81			
CO & PO M	APPI	NG												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1	1	-	2	3	1	1	1	1	2		
CO2	2	2	1	2	-	1	1	1	1	1	-	2		
CO3	1	2	1	1	1	2	2	1	1	1	1	2		
CO4	2	1	1	1	-	2	3	1	1	1	1	2		
CO5	2	1	1	1	1	2	2	1	1	1	1	2		
AVERAGE	1.6	1.4	1	1.2	1	1.8	2.2	1	1	1	1	2		
計畫		,		,		OVE	CRAL	L MAP	PING	OF SUE	BJECT	1.35		

									1				
	CO	PO	PO1	PO1	PO1								
	%	1	2	3	4	5	6	7	8	9	0	1	2
CO1	60	1.8	0.6	0.6	0.6	-	1.2	1.8	0.6	0.6	0.6	0.6	1.2
金属经验		1.9		0.6	1.3		0.6	0.6	0.6	0.6			
CO2	65	5	1.3	5	1	-	5	5	5	5	0.65	_	1.3
有在地方		1.4	0.9	0.4	0.4	0.4	0.9	0.9	0.4	0.4	=		
CO3	47	1	4	7	8	7	4	4	7	7	0.47	0.47	0.94
		1.9	0.6	0.6	0.5		1.2	1.9	0.6	0.6			
CO4	64	2	4	4	3	-	8	2	4	4	0.64	0.64	1.28
		1.2	0.4	0.4	0.4	0.4	0.8	0.8	0.4	0.4			
CO5	43	9	3	3	7	7	6	6	3	3	0.43	0.43	0.86
AVERAG		1.6	0.7	0.5	0.6	0.4	0.9	1.2	0.5	0.5			
E	55.8	7	8	6	8	7	9	3	6	6	0.56	0.54	1.12
									Fin	al atta	ainmen	t level	0.81

FACULTY.

HOD.

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF ME

SUBJECT	AUTOMOBILE ENGINEERING	SUBJECT CODE	18ME824

COURSE OUTCOME

CO1	To identify the different parts of an automobile and it's working
CO2	To understand the working of transmission and braking systems.
CO3	To comprehend the working of steering and suspension systems
CO4	To learn various types of fuels and injection systems
CO5	To know the cause of automobile emissions, its effects on environment and methods to reduce the emissions.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, Statistics and discrete mathematics), science, and engineering for solving Engineering problems And Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering Problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

NAME O COLL		E		SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY, TUMAKURU										
FACULTY	NAM	Œ	Prof. Ravikumar K R											
BRAN	СН		MECHANICAL ACADEMIC YEAR 202									3-24		
COURSE	B.]	E	SEMESTER VIII SECTION											
SUBJECT	AUT	омо	BILE E	NGIN	ÉERI	NG	SUBJE	CT C	ODE	18MI	E824			
CO & PO M	APPIN	NG												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1	1	-	2	3	1	1	1	1	2		
CO2	2	2	1	2	-	1	1	1	1	1	-	2		
CO3	1	2	1	1	1	2	2	1	1	1	1	2		
CO4	2	1	1	1	1	2	3	1	1	1	1	2		
CO5	2	1	1	1	1	2	2	1	1	1	1	2		
AVERAGE	1.6	1.4	1 1.2 1			1.8	2.2	1	1	1	1	2		
						OVE	RAL	L MAPI	PING (OF SUB	JECT	1.35		

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	60	0.6	0.6	0.6	0.6	-	1.2	1.8	0.6	0.6	0.6	0.6	1.2
CO2	74	1.48	1.48	0.74	1.31	-	0.74	0.74	0.74	0.74	0.74	-	1.48
CO3	50	0.5	1	0.5	0.48	0.5	1	1	0.5	0.5	0.5	0.5	1
CO4	63	1.26	0.63	0.63	0.53	-	1.26	1.89	0.63	0.63	0.63	0.63	1.26
CO5	50	1	0.5	0.5	0.47	0.47	1	1	0.5	0.5	0.5	0.5	1
AVERAGE	59.4	0.97	0.84	0.59	0.68	0.49	1.04	1.29	0.59	0.59	0.59	0.56	1.19
Final attainment level												0.79	

FACULTY

PRINCIPAL SIET. TUMKUR.