

COURSE OUTCOME

CO1: Demonstrate proficiency in handling loops and creation of functions.

CO2: Identify the methods to create and manipulate lists, tuples and dictionaries.

CO3: Develop programs for string processing and file organization

CO4: Interpret the concepts of Object Oriented Programming as used in Python.

PSO1: To Create, select, and apply appropriate techniques, resources, modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PSO2: To manage complex IT projects with consideration of the human, financial, ethical and environmental factors and an understanding of risk management processes, and operational and policy implications.

PSO3: Acquaint module knowledge on emerging trends of the modern era in computer science and engineering.

PROGRAM OUTCOMES

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **P05** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **P011** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

FACULTY	' NAME	Dr. Rekha H			
BRAN	СН	ISE	ACA	DEMIC YEAD	R 2023-24
COURSE	B.E	SEMESTER	Ι	SECTION	G
SUBJECT		DUCTION TO PY PROGRAMMING		SUBJEC CODE	Г BPLCK105B
		C	0 & PO	MAPPING	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2												2		
CO2	2	3											3		
CO3	2	3	3										3		
CO 4	2	3											2		
AVERAGE	2	2.25	0.75										2.5		

CO & PO ATTAINMENT

		CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	C01	65	1.3												1.3		
	CO2	63	1.26	1.89											1.89		
	CO3	74	1.48	2.22	2.22										2.22		
	CO4	71	1.42	2.13											1.42		
AV	ERAGE	68.25	1.36	2.08	2.22										1.70		

62

PRINCIPAL SIET. TUMKUR.

Roll			BPLCK105B	Sem:I 'G' SEC	2022-23	ODD			FACULTY	: Dr. Rekha I	ł												
No.	USN	Name	Introduction	n to python pro	gramming	T1	T2		T3	AS	SSIGNMENT	10 + Lab 15			F	XTERNA	L			F	Final		TOTAL
			T1(30)	T2(30)	T3(30)	CO1-30	CO2-(30)	CO3-(15)	CO4-(15)	CO1-6	CO2-6	CO3-7	CO4-6	SEE(50)	CO1-12	CO2-13	CO3-12	CO4-13	CO1-48	CO2-49	CO3-34	CO4-34	AVG
1	1SV22IS037	Sai Vignesh H M	0	21	15	0	21	7	8	5	5	5	4	29	7	7	7	7	12	33	19	19	21
2	1SV23IS001	Amith babu M P	12	11	15	12	11	7	8	6	6	7	6	38	10	10	10	10	28	27	24	24	25
3	1SV23IS002	Ananya H V	17.25	0	23.5	17.25	0	11.5	12.5	6	6	7	6	39	10	10	10	10	33	16	28	28	26
4	1SV23IS003	Ankitha K M	17.25	14.25	18	17.25	14.25	10	8	6	6	7	6	41	10	10	10	10	34	31	27	24	29
5	1SV23IS004	Bhavana R	21	18	15	21	18	7	8	6	6	7	6	42	11	11	11	11	38	35	25	25	30
6	1SV23IS005	Bhoomika C M	23	12	14	23	12	. 7	7	6	6	7	6	41	10	10	10	10	39	28	24	23	29
7	1SV23IS006	Bhoomika G	26	27.75	22	26	27.75	11	11	6	6	7	6	48	12	12	12	12	44	46	30	29	37
8	1SV23IS007	Chowdry	12	7.5	15	12	7.5	7	8	5	5	6	6	33	8	8	8	8	25	21	21	22	22
9	1SV23IS008	D Nanditha	12	15.75	28	12	15.75	14	14	6	6	7	6	42	11	11	11	11	29	32	32	31	31
10	1SV23IS009	Darshan K V	19.5	23	21	19.5	23	10	11	6	6	7	6	46	11	11	11	11	37	40	28	28	34
11	1SV23IS010	Deepak R	14	18	15	14	18	7	8	6	6	7	6	41	10	10	10	10	30	34	24	24	28
12	1SV23IS011	H B Anusha	20	18	13	20	18	6	7	6	6	7	6	42	10	10	10	10	36	34	23	23	29
13	1SV23IS012	H M Gowthami	21	0	16	21	0	8	8	6	5	6	5	33	8	8	8	8	35	13	22	21	23
14	1SV23IS013	Hemabhinaya G	11.25	12	16	11.25	12	8	8	6	6	7	6	39	10	10	10	10	27	28	25	24	26
15	1SV23IS014	K P Aishwitha	19	23	20	19	23	10	10	6	6	7	6	45	11	11	11	11	36	40	28	27	33
16	1SV23IS015	Keerthana M	26.25	13.5	9	26.25	13.5	5	4	6	6	7	6	41	10	10	10	10	43	30	22	20	29
17	1SV23IS016	Koushik S	11.25	20	17	11.25	20	10	7	6	6	7	6	41	10	10	10	10	28	36	27	23	29
18		Kumaraswamy S	14.25	8	13	14.25	8	6	7	6	5	6	5	33	8	8	8	8	28	21	20	20	23
19	1SV23IS018	Megha Irappa	26	21	0	26	21	0	0	6	6	7	6	41	10	10	10	10	42	37	17	16	28
20		Monisha R	19	20	15	19	20	7	8	6	6	7	6	42	11	11	11	11	36	37	25	25	30
21			18	30	16	18	30	8	8	6	6	7	6	46	11	11	11	11	35	47	26	25	34
22	1SV23IS021		30	27	26	30	27	13	13	6	6	7	6	49	12	12	12	12	48	45	32	31	39
23		Prajwal Gowda G R	15	17.25	12	15	17.25	6	6	6	6	7	6	40	10	10	10	10	31	33	23	22	27
24			12.75	12	13	12.75	12	6	7	6	6	7	6	38	10	10	10	10	28	28	23	23	25
25 26	1SV23IS024 1SV23IS025	Praveen B S	10.5	18 19.5	19 25	10.5	18	10	9 13	6	6	7	6	41	10	10	10	10	27	34	27	25	28
20			10.5	19.5	11	10.5	19.5	6	5	6	6	7	6	41	10	10	10	10	21	36	29	29	29
28			13.5	13.5	10	13.5	13.5	5	5	6	6			39	10	10	10	10	26	34	23	21	26
28		Ranjitha M P	19.5	13.5	9	19.5	13.5	5	4	6	6	7	6	38	10	10	10	10	29	29	22	21	25
30			10.5	4.5	19.5	19.5	4.5	10.5	9	6	6	5	5	39 32	10 8	10 8	10	10 8	35 24	29	22	20	27
31		Sanjay Kumar K S	7.5	7.5	20	7.5	7.5	10.5	10	5	5	6	6	33	8	8	8	8		18	23	22	22
32		Sindhu V	21	5.25	16	21	5.25	8	8	6	6	7	6	39	10	10	10	8 10	21 37	21	24	24	22
33		Srusti B K	13.5	0	24	13.5	0	12	12	6	6	7	6	39	10	10	10	10	29	16	25		27
34		Sumit	0	16.5	19	0	16.5	10	9	5	5	6	6	33	8	8	8		13			28	25
35		Suresh Kumar K	16	10.5	17	16	10.5	8	9	6	6	7	6	33	10	10		8		30	24	23	23
36			10	25	30	11	25	15	15	6	6	7	6	46	10	10	10	10 12	32 29	26 43	25	25	27
37			19	26	21	19	26	10	13	6	6	7	6	40	12	12	12	12	36		34	33	34
38	1SV23IS038		16	15	17	16	15	10	7	6	6	7	6	44	10	10	10	10	36	43	28 27	28 23	34 29
															10	10	10	10	31.39	31.11	25.21	23	29
																			65%	63%	74%	71%	

T

12 a

Munder Lemonthe PRINCIPAL SIET. TUMKUR.

COURSE OUTCOME

CO1: Apply the K-Map techniques to simplify various Boolean expressions.

CO2: Design different types of combinational and sequential circuits along with Verilog programs. **CO3:** Describe the fundamentals of machine instructions, addressing modes and Processor performance.

CO4: Explain the approaches involved in achieving communication between processor and I/O devices.

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage:Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities. **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need forsustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE	SHR	IDEV	'I INS'	ITTU.	TE O	FENC	SINE	ERIN	5 & T	ECHN	OLOG	ΞY			
FACULTY	NAM	E	Mrs. I	LAVA	NYA	K									
BRAN	СН]	ISE		AC	CADE	EMIC	YEAR			2	023-24		
COURSE	B.	E	SEM	ESTE	R	III	s	ECTIO	ON						
SUBJECT	СС		ITAL JTER				N		JECT ODE	[В	CS302		
				í.	C	0 & 1	PO M	APPIN	NG						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	2	3	3	3						3	2	3	1
CO2	3	3	3	3		2						2	2	2	2
CO3	3		3	3	3	3						3		1	1
CO4	3	1	3	2		3						3	2	1	1
AVERAGE	3	2.3	2.8	2.8	3	2.8						2.8	2	1.8	1.3
					OV	ERAI	LM	APPIN	G OF	SUBJ	ЕСТ	2.46			

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	58.6	1.75	1.75	1.17	1.75	1.75	1.75						1.75	1.17	1.75	0.58
CO2	64.6	1.93	1.93	1.93	1.93		1.29						1.29	1.29	1.29	1.29
CO3	64.3	1.92		1.92	1.92	1.92	1.92	•					1.92		0.64	0.64
CO4	64.9	1.94	0.64	1.94			1.94						1.94	1.29	0.64	0.64
AVERA	AGE	1.89	1.44	1.74	1.87	1.84	1.73						1.73	1.25	1.89	1.44
							FII	NAL A	ATTA	INME	NT LE	VEL	1.68			

Q

0

lampetter. Mand PRINCIPAL SIET. TUMKUR

Roll			1CS3	Sem 3 :III	023-2	ODD		FAC	ULTY	: Lava	anya K														
No.	USN	Name	mput	ter Ne	twork	T1		T2	T3	SSIG	NMEN	T 10 +	LAB	1			EX	TER	NAL			Fi	nal		тот
			T1	T2	T3	CO1- 20	CO2 20	CO3- 10	CO4- 10	CO1- 8	- CO2- 9	CO3- 8	CO4- 10	LAB	ASS	SEE(50)	CO1 13	CO2			C01-	CO2-	CO3-	C04-	AL
1	1SV22IS001	AKASH	15	13	15	15	13	7	8	8	9	8	9	24	10	37	9	9	13	12	<u>41</u> 32	41	31	32	AVG
2	1SV22IS002	AMULYA S	0	14	12	0	14	6	6	8	9	8	9	24	10	18		-	-	1.		31	24	26	29
3	1SV22IS003	ANUPAMA V	14	15	15	14	15	7	8	8	9	8	10	25	10	26	5	5	5	5	13	28	19	20	20
4	1SV22IS004	AVINASH KADAPPA	14	14	11	14	14	5	6	8	9	8	9	23	10	18	5	7	7	7	29 27	31 28	22 18	25 20	26
5	1SV22IS005	BINDHUSHREE B R	14	15	12	14	15	6	6	8	9	8	8	23	10	21	5	5	5	5	27	29	19	19	24
6	1SV22IS006	C M MANASA	0	10	3	0	10	2	1	8	8	8	8	22	10		-			11.0			-		
7	1SV22IS007	CHANDANA S	9	5	0	9	5	0	0	8	9	8	о 8		10	18	5	5	5	5	13	23	15	14	16
8	1SV22IS008	DARSHAN H G	14	12	12	14	12	6	6	8	8	8	8	23 22	10	30	8	8	8	8	25	22	16	16	19
9	1SV22IS009	DHANUSH U	0	11	9	0	11	5	4	8	9	8	<u> </u>		10	33	8	8	8	8	30	28	22	22	26
10	1SV22IS010	DRUTHI K N	15	15	15	15	15	7	8	8	9	8	9	24 24	10	26	7	7	7	7	15	27	20	20	20
11	1SV22IS011	FIROZ NOUSHAD	15	12	14	15	12	7	7	8	9	o 8	9	24	10	29	7	7	7	7	30	31	22	24	27
12	1SV22IS012	G K SHARATH	13	13	10	13	13	5	5	8	9	о 8	8	24	10	23	6	6	6	6	29	27	21	22	25
13	1SV22IS013	G VISHAL	12	8	10	12	8	5	5	8	9	8	° 9	23	10 10	19	5	5	5	5	26	27	18	18	22
14	1SV22IS014	GANESH G-	11	5	10	11	5	5	5	8	9	8	8	24	10	19	5	5.	5	5	25	22	18	19	21
15	1SV22IS015	HARSH ANAND	13	12	12	13	12	6	6	8	8	8	8	23	10	22 25	6	.6	6	6	25	20	19	19	20
16	1SV22IS016	HITHYSH D	8	5	5	8	5	3	2	8	8	8	8	22	10	20	6	6	6	6	27	26	20	20	24
17	1SV22IS017	JNANESH S	0	8	3	0	8	2	1	8	8	8	8	22	10	20	5	5	5	5	21	18	16	15	18
18	1SV22IS018	KALYANI	15	12	15	15	12	7	8	8	9	8	9	24	10	24	6 7	6	6	6	14	22	16	15	17
19	1SV22IS019	KARTHIK N	0	11	11	0	11	5	6	8	9	8	8	23	10	29	7	7	7	7	30	28	22	24	26
20	1SV22IS020	KOMALA	12	14	14	12	14	7	7	8	9	8	10	25	10	20	5	7	7	7	15	27	20	21	21
21	1SV22IS021	KOUSHIK N S	15	15	14	15	15	7	7	8	9	8	10	25	10	44		5	5	5	25	28	20	22	24
22	1SV22IS022	KUNDANA B S	12	14	12	12	14	6	6	8	9	8	9	24	10	28	11 7	11	11	11	34	35	26	28	31
23	1SV22IS023	KUSUMA K B	14	15	14	14	15	7	7	8	9	8	10	25	10			7	7	7	27	30	21	22	25
24	1SV22IS024	LAKSHMI K M	14	15	14	14	15	7	7	8	9	8	8	23	10	29 28	7	7	7	7	29	31	22	24	27
25	1SV22IS025	LOHITH C	0	15	11	0	15	5	6	8	9	8	0 10	25	10	30	7 8	7	7	7	29	31	22	22	26
26	1SV22IS026	MANU NAIK K	10	9	9	10	9	5	4	8	7	8	8	23	10	23		8	8	8	16	32	21	24	23
27	1SV22IS027	MEGHA K E	8	11	9	8	11	5	4	8	9	8	10	25	10	32	6	6	6	6	24	22	19	18	21
28	1SV22IS028	NITHIN T L	13	10	9	13	10	4	5	8	7	8	8	23	10	32	8	8	8	8	24 29	28 25	21	22	24 23

PRINCIPAL SIET. TUMKUR.

51	LE2	ARCHANA H S	11 10	11	12 11	11 10	11 0	<u>6</u> 5	6	8	9	8	8	23 21	10 10	30 18	8	8	8	8	27 23	28 12	22 18	22 19	24
49 50	LE1	S BASAVARAJ	12	6	14	12	6	7	7	8	9	8	9	24	10	26	7	7	7	7	27	22	22	23	23
48 49		MEGHANA H R PUNITH K S	0	9	14	0	9	• 7	7	8	9	8	9	24	10	27	. 7	7	7	7	15	25	22	23	21
47	a share the share the	NAYANA S S	0	11	12	0	11	6	6	8	7	8	8	21	10	33	8	8	8	8	16	26	22	22	22
46	1SV22IS047	YUVARAJ K B-	15	15	14	15	15	7	7	8	8	8	8	22	10	26	7	7	7.	7	30	30	22	22	26
45	1SV22IS046	VASU M S	7	11	11	7	11	5	6	8	7	8	8	21	10	26	7	7	7	7	22	25	20	21	22
44	1SV22IS045	VAISHNAVI P	0	12	8	0	12	4	4	8	7	8	8	21	10	27	7	7	7	7	15	26	19	19	20
43	1SV22IS044	TRIVENI M	13	12	14	13	12	7	7	8	9	8	9	24	10	27	7	7	7	7	28	28	22	23	25
42	1SV22IS043	SURAJ B V	14	15	15	14	15	7	8	8	9	8	9	24	10	33	8	8	8	8	30	32	23	25	28
41	1SV22IS042	SUPRIYA S N	9	14	10	9	14	5	5	8	8	8	8	22	10	18	5	5	5	5	22	27	18	18	21
40	1SV22IS041	SOMANATH	0	8	3	0	8	2	1	8	9	8	9	24	10	20	5	5	5	5	13	22	15	15	16
39	1SV22IS040	SINDHU M	0	11	5	0	11	3	2	8	9	8	8	23	10	29	7	7	7	7	15	27	18	17	20
38	1SV22IS039	SHAMANTH R	12	11	12	12	11	6	6	8	9	8	10	25	10	29	7	7	7	7	27	27	21	23	2:
37	1SV22IS038	SANJAYKUMAR-	14	_12	8	14	12	4	4	8	9	8	10	25	10	19	5	5	5	5	27	26	17	19	22
36	1SV22IS036	ROHITH M G-	11	11	9	11	11	4	5	8	9	8	8	23	10	20	5	5	5	5	24	25	17	18	21
35	1SV22IS035	RANJITHA A M	15	15	15	15	15	7	8	8	9	8	10	25	10	27	7	7	7	7	30	31	22	25	27
34	1SV22IS034	RAKSHITHA C R	0	13	8	0	13	4	4	7	8	7	8	20	10	18	5	5	5	5	12	26	16	27	17
33	1SV22IS033	RAKESH R	14	15	13	14	15	7	7	8	9	8	10	24	10	41	10	10	10	10	30	31 34	22	24	21
32		RAJESWARI	15	14	15	15	14	7	8	8	9	8	9	24	10 10	27	6 7	6 7	6 7	6	27 30	29	20	22	2
31	1SV22IS031	PURUSHOTHAM	12	14	14	12	11	6	7	8	9	8	9	23	10	22	6	6	6	6	26	26	21	21	2
29 30	1SV22IS030	PRARTHANA P PRIYA R	13 12	9	12 14	13 12	9 11	6	6	8	9	8	9	25	10	28	7	1	7	7	28	25	21	22	2

 24.06
 26.52
 19.94
 20.79

 58.68%
 64.68%
 64.33%
 64.96%

PRINCIPAL SIET. TUMKUR.

COURSE OUTCOME

CO1:Explain the structure and functionality of operating system.
CO2:Apply appropriate CPU scheduling algorithms for the given problem..
CO3:Analyse the various techniques for process synchronization and deadlock handling.
CO4:Apply the various techniques for memory management.
CO5:Explain file and secondary storage management strategies.
CO6:Describe the need for information protection mechanisms.

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage:Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities. **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need forsustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

PSO1: To Create, select, and apply appropriate techniques, resources, modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PSO2: To manage complex IT projects with consideration of the human, financial, ethical and environmental factors and an understanding of risk management processes, and operational and policy implications.

PSO3: Acquaint module knowledge on emerging trends of the modern era in computer science and engineering.

COLLEGE	SHR	IDEV	VI INST	TUTI	'E OF	ENG	INEE	RING	& TI	ECHN	OLOG	GY			000
FACULTY	NAM	Œ	Dr. Ch	aran]	KV									a de la composición de la comp	
BRAN	СН		I	SE		AC	ADE	MIC Y	(EAR		ed has	20	023-24		
COURSE	B.	E	SEM	ESTE	R	ш	SI	ECTIC	DN		ar id				
SUBJECT		OP	ERATI	NG SY	(STE	MS			JECT	C	6.34	В	CS303		
e ficere		iulaa	1 1 1 1 1 1		C	0 & P	O MA	PPIN	G	diardia	10.31.100	Saida			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	ULTY NAMEBRANCHJRSEB.EJECTC013023033043053063		3	1	3	•	1	2	1	1	1	,2	3	2	3
CO2	ULTY NAME BRANCH RSE B.E ECT O D1 3 D2 3 D3 3 D4 3 D6 3		3	1	1			2	1	1	1	2	3	3	3
CO3	3	2	2	1	1			2	1	1	1	2	3	2	2
CO4	3	2	2	1	1			2	1	1	1	2	3	2	2
C05	3	2	1	1	1			1	1	1	1	2	3	2	1
CO6	3	2	1	1	1			1	1	1	1	2	3	2	1
AVERAGE	3	2.1	6 2	1	1.33			1.66	1	1	1	2	3	2.16	2
					OV	ERAL	L MA	APPIN	GOI	SUB.	JECT	1.84			

			100	and the second			and the state		的 都有 医子宫 一	sto up				
	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO3
CO1	0.28	0.8565	0.571	0.857	0.2855	0.8565			0.571	0.2855	0.2855	0.2855	0.571	0.28
CO2	0.24	0.7251	0.725	0.725	0.2417	0.2417			0.4834	0.2417	0.2417	0.2417	0.4834	0.24
CO3	0.28	0.8697	0.58	0.58	0.2899	0.2899			0.5798	0.2899	0.2899	0.2899	0.5798	0.28
CO4	0.28	0.8697	0.58	0.58	0.2899	0.2899			0.5798	0.2899	0.2899	0.2899	0.5798	0.28
	0.25	0.7782	0.519	0.259	0.2594	0.2594			0.2594	0.2594	0.2594	0.2594	0.5188	0.25
	0.25	0.7782	0.519	0.259	0.2594	0.2594			0.2594	0.2594	0.2594	0.2594	0.5188	0.25
AVEI	RAGE	0.265	0.817	1.545	0.558	0.272				1.4152	0.2725	1.2725	0.27245	0.544
		n		л	7.			F	INAL A	TTAIN	MENT I	LEVEL	1.68	

	PSO1	PSO2	PSO3
CO1	2	2	2
CO2	2	2	2
CO3	2	2	2
, CO4	2	1	2
CO5	2	2	2
CO6	2	2	2
AVERAGE	2	2	2

Auden

12

PRINCIPAL SIET. TUMKUR.

	52	1	00	49	40	4	40	45	4	43	42	41	40	39	38	37	36	35	34	33	32	3	30	20	20	26	25	24	23	22	21	20	19	18	16	15	14	13	3			8	7	6	s		1		1_	Roll No.
	ISV231S403	ISV231S402	ISV2318401	ISV231S400	15V211S020	10V/10V/	ISV22IS047	ISV22IS046	ISV22IS045	1SV22IS044	ISV22IS043	ISV22IS042	1SV22IS041	1SV22IS040	ISV22IS039	ISV22IS038	ISV22IS036	ISV2218034	ISV2218034	ISV2218033	ISV2218032	1SV221S031	6706177A CT	1911010000	1SV22IS027	1SV22IS026	1SV22IS025	1SV22IS024	ISV22IS023	1SV22IS022	ISV22IS021	ISV22IS020	1SV22IS019	18V72218017	1SV22IS016	1SV22IS015	1SV22IS014	1SV22IS013	18V2218012	10102177 A CT	1SV22IS009	1SV22IS008	1SV22IS007	ISV22IS006	1SV22IS005	-	1SV771S004	ISV2	1SV22IS001	
	3 UPRUTHVI			-									-		-			_											-	-	_						-		-					-				-		USN
	THVI	S BASAVARAJ	4	ARCHANAHS	MEGHANA H R	NAYANASS	YUVARAJ K B-	SW	VAISHNAVI P	TRIVENI M	SURAJ B V	SUPRIYA S N	SOMANATH	SINDHUM	SHAMANTH R PATH	SANJAYKIMAR.	ROHITH M.C.	PANITUAAN	LOI K	PAKESH B	PA IESWABI KINGAN DANGAN	IAK	PRAKIHANA P	NITHINTL	MEGHA K E	MANU NAIK K	LOHITH C	LAKSHMI K M	KUSUMA K B	KUNDANA B S	KOUSHIK N S	KOMALA BOMMAYI	KARTHIK N GANICA	JNANESH S	HITHYSH D	HARSH ANAND	GANESH G-	G VISHAL	G V SUABATH KITCH	DRUTHIKN	DHANUSH U	DARSHAN H G	CHANDANA S	CMMANASA	INDHUSHREE B R	AVINASH KADAPPA PARAGOUDAR	ANUPAMA V	AMULYA S	AKASH MALLAPPA HEGADI	Name
	12	13	12	12	12	AB	15	13	AB	15		10	AB	10	12	9	15	8	14	15	12	10	6	9	12	10	AB	13	-	10	4	14	14	11	~ ~		10	13	15	15	AB	= 4	0 4			15	15	8	15	BCS
		12	-	10	~	8	15	13	10	12	=	. 9	12	15	12	11	14	AB	15	14	14	13	12	12	10	13	13	14	12	14	13	12	12	=	9	12	12	14	14	15	14	AB	AB	=	-	12	15	4	14	BCS303 Sem:III 2023-24 Operating System
				=	=	10	15	1	13	-	13	5	12	9	14	10	15	8	15	14	13	13	*	12	12	13	14	15	13	15	15	15	15	7	0 10	=	10	15	13	15	14	14	+	12	+	-		+	13	III 202: System
•					-		~ 0	-		6	6	6	0	6	6	6	6	6	6	6	6	0	6	~	~		6	6	6	6	6	6	6	6 0	0	6	6	6	6	~	0	+	6	6	+	+	+	+	+	+++
•	-	, .	0		-		•	10	4	0	6	4	0	4	6	3	9	2	~	9	6	4	~ ~	2 0	4		1	4	s	4	3	8	00		+			-	+	+	+				+	+	+	20	-10	ODD T1
	6	1		2			,	-	6	0	5	3	6	9	6	~				~	*	1				6			6	~						-	-	-	+		5	3	3	3	ľ	9	0		C02-10 C	
0	6	6	6	6	6	6	6	6	6	6	6	6	6	0	6	~								+	6					-				1.	7	6	•	00 0	* *	~	6	0	0	2	•		• •		CO3-10 (17
F							\vdash					+	+	+	+	+	+	+	+		-				-	6	6	6	•	•	•	00		6	6	6	6	20	6	6	6	0	•	6	•		-	6	CO4-10	
,	*	6	+	4	3	8	8	6	*	7	6	2	-	,.			-		7	6	6	1	5	5	5	5	7	8		* •	* *		0	2	8	-	3	6	8	8	7	7	4	5	6	8	3	7	CO5-10	FACULTY : Dr. Charan K V
7	7	7	-	1	7	7	7	7	7	1	1.	- 1	-	1	1	7	7	7	7	7	7	7 *	7	7	7	7	1	-	-	7	7	7	7	7	1	1	1	7	7	7	7	1	1	7	7	1	7	7	COX.	Charan K
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		10	10	10	8	10	10	10	10			10	10	-	10 10	-	<
4	-	-	-	-	-	-	~	-	-			5	5	5	5	. 5	5	~	5	5	5	5	5	~	-			3	5	5	5	5	5	3 0	+		5					+	-	+		H	+	-	4	
~·						-				5	5	5	5	5	5	5	5	-	5	~	5	~	-	-	-		5	5	5	5			-	+	+				-					+	5	5	5	C02-5 C	ASSIG	
4.0		5	5	5				3	5	5	5	5	5	5	5	5		-	-	-		-		-		-					5	-				Š	5	5			5	5		-	5	50		C03-5 0	ASSIGNMENT 10 + LAB 25	-
u u	5	5	5	5	5	3	5	5	5	s	3	5	5	-	-	-		5	5		-		5					-	-		+	-			5	5	5	5		-	5	5	5		-	50	+	C04-5	0+ LAB 2	
	5	5	5	5	5	5	5	5	5	5	5		-	+	+	-	+	+	+	+	+	+				5	5	S	5	5				5	S	S	5		5	s	5	5	N	S		~ ~	5	C05-5	5	
23 22	30	28	28	25	3	4	19		-	+	+	+	+	+	+	+	+	S	1	1	1		5	S		5	5	5					5	5	5	5	~ ~	5	5	5	5	5	n	5	4			C06-5		
10	+	10	+	+	-	-	-	+	1	1	21	t	t	t	t	t	27	34	36	29	40	25	23	32 .	19	28	3	3 2	10	32	43	4	6	32	10	23	26	36	18	25	18	•	18	25	27	25	29	SEE(50)		
10	+	+	+	+	+	+	+	+	+	+		+	10	10	10	10	10	10	10	10	10	10	10	10	10	10	5	10	10	10	10	10	10	10	10	10	10	10	10	10	10		10	10	10	10	5	C01-10		
H	+	+	+	5 0	+	+	10	5 0			0	10	10	10	10	10	10	10	10	10	10	10	10	10	0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		10	10	10		5 01-202	602-10		
10 10	+	+	+	+	+	+	10	+	+	+	10	10	10	10	10	10	10	10	10	10	10	10	1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	1.	10	U.		10	10	10	5 10 10	EXTERNAL		
N 8 10	00	00	5	10	10	0	10	10	12	-	7	10	2	•	10	~	1	5	5	•	10		10	-		10	2	7	10	10	10	0	0	0	3	0	6	10	0	-	0	0		5	7	· •	CO4-10	1L		
444	5	5	5	5	-	-		5	3	5	5	5	5	~ ·	-	~	-			-	-			5	5	5	5	5	5	3	5	5	-	. 5	5	5	5				5	5	T	5	5) COS-5	1 1		
	5	5	5	5	5	5	5	5	5	5	5	-	-	-	-								5	5	5	5	5	5	~	5	~	-		5	5	5	~			5	5	3	1	~ ·	5		5 CO6-5		-	
26 26 26 1313.00 28.54%	26	26	20	26	26	20	26	26	26	26	20	26	36	26	20	26	26	26	26	26	26	26	26	20	26	26	26	26	36	36	70	24	26	26	26	26	20	20	26	26	26	26		34	96	21		+	-	
21 22 21 1034.00 22.48%	21	21	15	24	22	15	24	24	21	19	1	10	18	24	17	23	24	21	19	18	18	21	17	15	22	19	18	10		23	20	15	17	18	19	27	24	15	20	18	18	18		T	Т	Π	30 CO2	F	+	
22 19 18 1075.00 23.37%	19	-	17	24	2	19	21	22	20	10	47	21	20	23	15	24	23	23	22	21	21	19	22	21	19	22	2 2	22	21	21	20	18	22	21	21	23	+			-	+	20	+ 21			2	-25 CO3	F		
21 14 13 854.00 18.57%	10	10		2	2	= ;	10	23	3	18	21	13	17	21	13	18	19	21	20	21	16	14	10	= ;	10	- 13	18	21	21	21	=	11	21	= ;		+			+	+	+	0		4	5	23 15	3-25 CO	Final		
16 14 17 798.00 17.35%	14	13	18	-	10	10	17	14	6	15	12	17	13	18	=	18	17	16	16 :	=	13				18	16	18	18	16	18	10		+	14	+	16	H	+	+	+	+	-	16 1		4	2 CT-4-5	136 00	H		
17 17 17 17 17 872.00 18.96%	17	17	17	17	17	17	17	17	17	15	17	17	17	17	17	17		11			1		17	+	+	+	17	15				+	+	+			-	+	17	+	+	+	16	H	13	17 17 17		H		
	28	25	33	31	25	31	32	30	25	26	30	29	28	3 5	24	20	31	+	+	+	+	+	25	+	-				+	+	+	+	3	+	H	-	+	+	17	+	-	+	17	H	+	+	1	H		
	-					L					1	1	1	T	L	1	1	Ľ	Ľ	Ĺ	Ľ	Ľ	Ľ	Ľ		~	0	30	-	32	26	4	17	28	29	30	32	26	25	24	26		30	31	26	AVG	TOTAL			

Ole alun

SIET. TUMKUR ł

COURSE OUTCOME

CO 1. Explain different data structures and their applications.

CO 2. Apply Arrays, Stacks and Queue data structures to solve the given problems.

CO 3. Use the concept of linked list in problem solving.

CO 4. Develop solutions using trees and graphs to model the real-world problem.

CO 5. Explain the advanced Data Structures concepts such as Hashing Techniques and Optimal Binary Search Trees.

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage:Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need forsustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

P011 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE	SHR	IDEV	T INST	ritu	re oi	FENG	INE	ERINO	G & T	ECHN	OLOG	GY			
FACULTY	NAM	E	Mr. V	ENUC	GOPA	LD		•							
BRANG	СН		1	SE		AC	CADE	MIC	YEAR			2	023-24		
COURSE	B.	E	SEM	ESTE	R	III	S	ECTIO	ON	The second se					
SUBJECT]		A STRI APPLI	C		В	CS304								
					С	CO & I	PO M	APPIN	NG						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2		3									2	2	1	1
CO2	2		3	2								2	2	1	1
CO3	3		2									2	2	1	1
CO4	3		2					•				2	2	1	1
C05	3		2									2	1	1	1
AVERAGE	2.6		2.4	2								2	1.8	1	2.6
					OV	ERAI	LL M	APPIN	IG OF	SUBJ	IECT	1.96			

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSOI	P802	PSO3
CO1	62	1.24		1.86									1.24	1.24	0.62	0.62
CO2	54	1.08		1.62	1.08								1.08	1.08	0.54	0.54
CO3	51	1.53		1.02									1.02	1.02	0.51	0.51
CO4	46	1.38		0.92									0.92	0.92	0.46	0.46
CO5	46	1.38		0.92									0.92	0.46	0.46	0.46
AVER	AGE	1.32		1.27	1.08								1.04	0.94	0.52	1.32
							FI	NAL /	ATTA	INME	ENT LI	EVEL	1.03			

Ch 8

62

l matter hand PRINCIPAL SIET. TUMKUR.

SIET. TI	F
IUMKUR.	Land

	2	1	-	
(Ē		
	7	r		

37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	4 7		ω	2	1	Roll No.]	
1SV22IS038	1SV22IS036	1SV22IS035	1SV221S034	1SV22IS033	1SV22IS032	1SV22IS031	1SV22IS030	1SV22IS029	1SV22IS028	1SV22IS027	1SV22IS026	1SV22IS025	1SV22IS024	1SV22IS023	1SV22IS022	1SV22IS021	1SV22IS020	1SV22IS019	1SV22IS018	1SV22IS017	1SV22IS016	1SV22IS015	1SV22IS014	1SV22IS013	1SV22IS012	1SV22IS011	1SV22IS010	1SV22IS009	1SV22IS008	1SV22IS007	1SV22IS006	1SV22IS005	1SV22IS004	1SV22IS003	1SV22IS002	1SV22IS001	USN		Data Structure	
SANJAYKUMAR-	ROHITH M G-	RANJITHA A M	KAKSHITHA C R	RAKESH R	KAJESWARI KUMAR	PURUSHOTHAMA K B	PRIYA R	PRARTHANA P	NITHIN T L-	MEGHA K E	MANU NAIK K	LOHITH C	LAKSHMI K M	KUSUMA K B	KUNDANA B S	KOUSHIK N S	KOMALA BOMMAYI	KARTHIK N GANIGA	KALYANI SHARATH-	JNANESH S	HITHYSH D	HARSH ANAND	GANESH G-	G VISHAL	G K SHARATH KUMAR-	FIROZ NOUSHAD	DRUTHI K N	DHANUSH U	DARSHAN H G	CHANDANA S	C M MANASA	PARAGOUDAR BINDHUSHREE B R	AVINASH KADAPPA	ANUPAMA V	AMULYA S	AKASH MALLAPPA	Name		Data Structures and its Applications	
19	9	19	6	19	19	10	=	11	15	11	15	0	15	10	12	17	12	13	19	0	4	12	11	11	16	19	15	0	Ξ	0	0	12	10	17	12	17	T1(20)	Γ	BC	1
17	16	20	5	20	20	18	17	15	16	14	18	19	16	17	13	18	18	17	20	13	8	15	17	17	19	17	20	19	17	11	15	12	1.0	20	13) 12(20)	IA MARKS	BCS304	
13	15	19	5	20	20	14	16	=	13	3	10	9	12	14	12	11	11	11	18	4	6	16	8	7	6	15	13	11	0	9	7	= ;	7	17	10	-) T3(20)	KS	F	1
19	9	19	6	19	19	10	Ξ	=	15	11	15	0	15	10	12	17	12	13	19	0	4	12	11	11	16	19	15	0	Ξ	0	0	12	5	17	12	_	CO1-20	3	2023	
10	10	6	ω	10	10	10	10	7	∞	7	10	10	10	10	6	10	10	10	10	6	4	7	10	10	10	10	10	10	10	s	7	6 10	10	10	7		C02-10		2023-2024	
7	6	10	N	10	10	8	7	8	∞	7	∞	9	م	7	7	∞	∞	7	10	7	4	∞	7	7	9	7	10	9	7	6	~	6 0	0	10	6	9	CO3-10	17		
6	7	10	N	10	10	7	8	5	6	N	5	ъ	6	7	6	6	S	6	10	2	s	∞	4	4	s	7	6	6	0	s	4	~ ~	1	10	5	10	CO4-10	T3		
7 8	8 7	9	ω	10	10	7	80	6	-	+	+	+	+	+	+	+	+	+	∞	N	4	∞	4	ω	4	∞	7	5	0	4	ω (^ ~	• •	7	ς.	\rightarrow	10 0			
8	7 7	8 7	7 7	7 8	7 7	8	7 8	8 7	+	+	+	+	+	+	+	+	+	8	8 7	7 6	7 6	8	7 7	8 7	7 7	+	+	8	7	+	× ×	× 1	+	1	+		CO1-8 CC	ASSIGNN		
8	7	8	8	8	8	8	7	7	7	7	∞ ·	7	7	+	+	+	+	~	7	7	+	00	7	+	00	7	+	~ ~	1	+	»	+	+	7 0	+		C02-8 C03-8	ASSIGNMENT 20 + SEMINAR 2	+	III SE
7	7	8	8	∞	∞	7	~	7	~	1	∞ .	1.	1.	1.	1.	1.	1	7	7	7	1	~	1	1	7	∞ ·	7	∞ ·	1.	7	× -	7	+	+	+	7	201 201	SEMINA	7	III SEM (ISE)
7	7	∞	8	∞	8	7	7	∞	∞ .	1.	1	1	7	» ·	1.	1.	1	7	7	1	7	7	»	7	∞	∞ ·	70	~ ~	× -	10	× 0	0 00		0 -	1	7		R2	AME	SE)
4	21	31	18	24	40	18	18	20	15	23		34	43	17	30	20 11	3 !	24	38	12	22	33	= ,	20 2	18	27	29	38	18	10	0	30	21	12	2 22	1	-	-	OF TH	
8 20	4.20	6.20	3.60	4.80	8.00	3.60	3.60	4 00	3 00	4 60	3 60	0.40	0.40	5.00	0.00	4.40	4.00	1.00	171	2 40	4.40	6 60	3 30	16	3 60	5 40	5 80	7 60	3.60	1.00	5.40	6.00	5.40	+	6.60	+	-		NAME OF THE STAF	
8	4.2	+	+		+	+		+	+	+	2.0	+	+	+	+	t	+	+	+	24	+	6.6	+	1 60	-	+	-	-	3.60	+	+	6	5	+	0 6.60	+	_		F : Ve	
0	4.2	6.2	3.6	4.8		3.6	3.6	A 0		10.0	0.8	8.4	+	+	+	+	+	+	+	+	+	7.7	+	1 2.00		10		+	0 3.60	+	0 5.40	.00 6.0	.40 5.4	+	6.60	+	_	- Bolow	F: Venugonal D	
0	4	6.2	3.6	4.8	+	+	-	A 1	4.0	+	+	+	+	+	+	+	4.8	-	+	+	+	+	+	1.00	+	+	.00 1.	+	+	+	+		.40 5	+	+-	+-	-	l	Ē	
0	+	+	+	+	+	20.0	-	-	1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.60 7	+	+	+	5.40 5	-	.40	+	+	+-	+	-		
+	+	+	+	+	+	+	+	+	+	+	+	┝	+	+	+	F	+	+	+	4.4	0.0	+	1.60	+	5.40	.80	.60	.60	3.60	.80	5.40	.00	.40	4.20	6.60	F	_			
22	+	+	17	+	+	32	+	3 23	4	27	-	+	22	-	\vdash	\vdash	+	35	+	15	27	20	21	27	31	29	16	22	12	10	24	24	29	23	32	CO1-38				
21	2 5	22	14	2 2	77	22	18	10	20	22	25	25	22	20	23	22	23	25	14	14	22	19	19	21	22	24	26	21	16	17	18	23	22	19	25	CO2-28	FI			
3 =	14	2 7	1 23	22	20	18	19	18	19	20	23	21	19	21	21	19	20	25	16	15	23	16	16	21	19	23	25	18	17	18	18	22	23	17	24	CO3-28	FINAL			
18	24	24	123	20	81	20	16	17	14	17	19	21	19	19	19	16	18	25	11	16	23	13	13	16	20	19	22	11	16	14	18	20	23	17	24	CO4-28				
19	23	15	23.	26	18	19	18	18	. 13	16	18	21	20	19	18	17	17.	23	H	15	22	14	12	16	21.	20	21	12	15	13	18	22.	20	16	21	CO5-28				
19	26	14	24	27	20	20	. 19	19	18	20	20	24	21	21	22	20	21	26	13	15	23	17	16	20	. 23	. 23	22	16	15	14	. 20	22	24	19	25	AVERAGE	TOTA			

···· ·

		. 52	51	50	49	48	47	46	45	44	43	42	41	40	39	38
		1SV23IS403	1SV23IS402	1SV23IS401	1SV23IS400	1SV21IS020	1SV20IS007	1SV22IS047	1SV22IS046	1SV22IS045	1SV22IS044	1SV22IS043	1SV22IS042	1SV22IS041	1SV22IS040	1SV22IS039
		1SV23IS403 PRUTHVI V	BASAVARAJU	PUNEETH K S	ARCHANA H S	MEGHANA H R	NAYANA SS	YUVARAJ K B-	VASU M S	VAISHNAVI P	TRIVENI M	SURAJ B V	SUPRIYA S N	SOMANATH	SINDHU M	SHAMANTH R PATIL
		11	10	14	18	16	0	15	15	0	13	17	7	6	0	12
		15	17	17	10	14	19	18	15	15	14	19	7	14	12	17
		11	7	9	0	6	15	6	9	12	11	19	8	0	8	14
		11	10	14	18	16	0	15	15	0	13	17	7	6	0	12
		7	10	10	ъ	7	10	10	7	7	7	10	4	7	6	10
		∞	7	7	5	7	9	∞	∞	∞	7	9	ω	7	6	7
		6	4	S	0	ر ار	7	4	ъ	6	6	10	4	0	4	7
		5	ω	4	0	4	00	S	4	6	5	9	4	0	4	7
		∞	7	∞	7	7	∞	7	∞	7	∞	∞	∞	7	~	∞
		∞	7	7	7	6	7	7	7	7	7	∞	∞	7	7	~
		8	7	7	7	6	7	∞	7	7	7	8	∞	6	7	7
		∞	6	7	7	7	7	~	7	7	7	7	∞	7	7	7
		8	7	7	8	7	7	~	7	8	7	7	∞	7	7	7
		15	0	13	24	26	25	29	25	13	25	39	19	8	15	27
		3.00	0.00	2.60	4.80	5.20	5.00	5.80	5.00	2.60	5.00	7.80	3.80	1.60	3.00	5.40
		з	0	2.6	4.8	5.2	л	5.8	5	2.6	5	7.8	3.8	1.6	ω	5.4
		ω	0	2.6	4.8	5.2	ъ	5.8	ъ	2.6	S	7.8	3.8	1.6	ω	5.4
		ω	0	2.6	4.8	5.2	ъ	5.8	ъ	2.6	5	7.8	3.8	1.6	ω	5.4
		ω	0	2.6	4.8	5.2	5	5.8	5	2.6	5	7.8	3.8	1.6	ω	5.4
62%	23.45	22	17	25	30	28	13	28	28	10	26	33	19	15	11	25
54%	20.47	18	17	20	17	18	22	23	19	17	19	26	16	16	16	23
51%	19.47	19	14	17	17	18	21	22	20	18	19	25	15	15	16	19
46%	17.66	17	10	15	12	17	19	18	17	16	18	25	16	6	14	19
46%	17.47	16	10	14	13	16	20	19	16	17	17	24	16	9	14	19
		18	14	18	18	20	19	22	20	15	20	26	16	12	14	21

P A A B

SIET. TUMKUR とぞ

COURSE OUTCOME

CO1. Acquire fundamental understanding of the core concepts in automata theory and Theory of Computation

CO2. Design and develop lexical analyzers, parsers and code generators

CO3.Design Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation and their relative powers.

CO4.Acquire fundamental understanding of the structure of a Compiler and Apply concepts automata theory and Theory of Computation to design Compliers.

CO5. Design computations models for problems in Automata theory and adaption of such model in the field of compilers.

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage:Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities. **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need forsustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

P012 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE	SHR	IDEV	'I INS'	TITU	TE O	FENC	GINE	ERING	G & T	ECHN	OLO	GY			
FACULTY	NAM	Œ	Mr. V	ENUC	GOPA	LD									
BRAN	СН]	ISE		AC	CADE	EMIC Y	YEAR			2	023-24	.	
COURSE	B.	E	SEM	ESTE	R	v	S	ECTI	ON						
SUBJECT			OMAT						BJECT ODE	r		2	1CS51		
	31	1			C	0 & 1	PO M	APPI	NG						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	3	2								2	3	1	
CO2	2	2	3									2	2	2	
CO3	2	2	2	2								1	2	2	
CO4	1	3	1									2	2	2	
CO5	2	3	2									3	2	2	
AVERAGE	2	2.6	2.2	2						•		2	2.2	1.8	
			. <u></u> l		OV	ERAL	L MA	APPIN	GOF	SUBJ	ЕСТ	2.11			

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	P503
CO1	67.7	2.03	2.03	2.03	1.35								1.35	2.03	0.67	
CO2	63.4	1.26	1.26	1.90									1.26	1.26	1.26	
CO3	63.1	1.26	1.26	1.26	1.26								0.63	1.26	1.26	
CO4	65.1	0.65	1.95	0.65									1.30	1.30	1.30	
CO5	65	1.30	1.95	1.30									1.95	1.30	1.30	
AVERA	GE	1.3		1.42	1.30								1.29	1.43	1.15	
							FIN	NAL A	TTA	NME	NT LE	VEL	1.31			

luz

Mande le PRINCIPAL SIET. TUMKUR.

					16.16						V	SEI	M SE	CTIC	DN (ISE)				S. years						
uto	mata Theor	ry & Complier I		11/1/22/11/20	CS54			1,54122,0213		-	1.447)23-20		1 aug	E	VEN	1.5	NAM	ME OF	THE	STAFF			Mr. Ven	ugopal	D
Roll		The second	IA	MAF	RKS	T1	r	2	1	[3	Assi	gn 10 +	Semin	ar 20 =	30/5	1015		Extern	al Mar	ks				FINAL		ugopai	
No.	USN	Name	T1 (20)	T2 (20)	T3 (20)	CO1- 20	CO2- 15	CO3- 15	CO4- 15	CO5- 15	CO1- 6	CO2- 6	CO3- 6	CO4- 6	CO5- 6	SEE (50)	CO1- 10	CO2- 10	CO3- 10	CO4- 10	CO5- 10	CO1-36	CO2-31	CO3-31	CO4-31	CO5-31	TOTAI AVG
1	1SV21IS001	ABDUL HADY	20	18	19	20	9	9	10	9	5	6	6	6	6	30	6	6	6	6	6	31	21	21	22	21	23.2
2	1SV21IS002	ABHIJITH B N	18	18	20	18	9	9	10	10	6	6	6	6	6	30	6	6	6	6	6	30	21	21	22	22	23.2
3.	1SV21IS003	ABHISHEK BASA	AB	19	19	0	9	10	10	9	6	6	6	6	6	24	5	5	5	5	5	11	20	21	21	20	18.4
4	1SV21IS004	DAKSHITH S	20	20	20	20	10	10	10	10	6	6	6	6	6	37	7	7	7	7	7	33	23	23	23	23	25.4
5	1SV21IS005	DANESHWARI	20	20	20	20	10	10	10	10	6	6	6	6	6	28	6	6	6	6	6	32	22	22	22	22	23.4
6	1SV21IS006	DEEKSHA K	20	20	20	20	10	10	10	10	6	6	6	6	6	21	4	4	4	4	4	30	20	20	20	20	23.0
7	1SV21IS007	DEEPIKA B M	20	20	20	20	10	10	10	10	6	6	6	6	6	27	5	5	5	5	5	31	21	20	20	20	
8	1SV21IS008	DHISHANTH G PA	15	17	19	15	9	8	9	10	6	6	6	6	6	31	6	6	6	6	6	27	21	20	21	21	23.4
9	1SV21IS009	GAGANA S	20	19	20	20	9	10	10	10	6	6	6	6	6	33	7	7	7	7	7	33	22	23	23	22	22.4
10	1SV21IS010	H M PRAJWAL KU	20	20	20	20	10	10	10	10	6	6	6	6	6	26	5	5	5	5	5	31	21	23	23		24.4
11	1SV21IS011	HARSHITHA P	20	20	19	20	10	10	9.5	9.5	6	6	6	6	6	24	5	5	5	5	5	31	21	21	20	21	23.2
12	1SV21IS012	HIMAVANTH K	19	19	15	19	9	10	7.5	7.5	6	6	6	6	6	18	4	4	4	4	4	29	19	20	17	20	22.6
13	1SV21IS013	KANTHARAJU V	AB	16	19	0	8	8	9.5	9.5	6	6	6	6	6	28	6	6	6	6	6	12	20	20	21	17	20.2
14	1SV21IS014	KEERTHANA K S	20	17	20	20	9	8	10	10	6	6	6	6	6	30	6	6	6	6	6	32	20	20	21	21	18.6
15	1SV21IS015	KRISHNAMURTH	17	16	20	17	8	8	10	10	6	6	6	6	6	31	6	6	6	6	6	29	20	20	22	22	23.4
16	1SV21IS016	MANOJ R	AB	18	14	0	9	9	7	7	6	6	6	6	6	18	4	4	4	4	4	10	19	19		22	22.8
17	1SV21IS017	MANOJ T	AB	· 16	14	0	8	8	7	7	6	6	6	6	6	14	3	3	3	3	3	9	•17	19	17 16	17	16.0
18	1SV21IS018	MANOJA S S	AB	12	8	0	6	6	4	4	6	6	6	6	6	8	2	2	2	2	2	8	14	14	10	16	14.8
19	1SV21IS019	MARUTHI G N	AB	14	15	0	7	7	7.5	7.5	6	6	6	6	6	10	2	2	2	2	2	8	14	14	12	12	11.6
20	1SV21IS021	NAVYA SHREE K	19	16	20	19	8	8	10	10	6	6	6	6	6	33	7	7	7	7	7	32	21	21		16	13.8
21	1SV21IS023	NIRNAY K	AB	13	AB	0	0	0	0	0	6	6	6	6	6	11	2	2	2	2	2	8	8	8	23	23	23.6
22	1SV21IS024	PALLAVI D	18	20	20	18	10	10	10	10	6	6	6	6	6	34	7	7	7	7	7	31	23	23	8	8	8.2
23	1SV21IS025	RAHUL V	AB	15	19	0	8	7	9.5	9.5	6	6	6	6	6	26	5	5	5	5	5	11	19	18	23	23	24.4
24	1SV21IS026	RAKSHITHA L	20	17	20	20	9	8	10	10	6	6	6	6	6	22	4	4.4	4.4	4.4	4.4	30	19	18	21	21	18.0
25	1SV21IS027	RANGANATHA G	15	17	20	15	9	8	10	10	6	6	6	6	6	38	8	7.6	7.6	7.6	7.6	29	23	22	20	20	21.8
26	1SV21IS028	SHREEVATHSA M	20	17	19	20	9	8	9.5	9.5	6	6	6	6	6	40	8	8	8	8	8	34	23	22	24	24	24.0
27	1SV21IS029	SOUNDARYA R	18	19	20	18	9	10	10	10	6	6	6	6	6	33	7	6.6	6.6	6.6	6.6	31	23		24	24	25.2
28	1SV21IS030	SYED SUHAIL AH	18	17	16	18	9	8	8	8	6	6	6	6	6	40	8	8	8	8	8	32	22	23	23	23	24.0
29	1SV21IS031	THARUN M S	14	18	19	14	9	9	9.5	9.5	6	6	6	6	6	18	4	3.6	3.6	3.6	3.6	24	19	22	22	22	24.2
30	1SV21IS032	THEJASWINI M	20	19	20	20	9.5	9.5	10	10	6	6	6	6	6	34	7	6.8	6.8	6.8	6.8	33	22	19	19	19	19.8
31	1SV21IS033	VARSHA K V	AB	13	19	0	6.5	6.5	9.5	9.5	6	6	6	6	6	27	5	5.4	5.4	5.4	5.4	11		22	23	23	24.6
32	1SV21IS034	VARSHINIMEGHA	13	15	19	13	7.5	7.5	9.5	9.5	6	6	6	6	6	36	7	7.2	7.2	7.2	7.2	26	18	18	21	21	17.8
33	1SV21IS035	VINUTHA H N	19	19	20	19	9.5	9.5	10	10	6	6	6	6		26	5	5.2	5.2	5.2	5.2		21	2	23	23	22.6
34	1SV21IS036	VISHNU R	20	20	20	20	10	10	10	10	6	6	6	6	6	27	5	5.4	5.4	5.4	5.4	30	21	-~	-21	21	22.8
35	1SV21IS037	YASHAS D R	20	19	20	20	9.5	9.5	10	10	6	6	6	6		31	6	6.2	6.2	6.2	6.2	31		NCIPA THMK	21		23.4

36	1SV22IS400	CHETHAN V	AB	16	20	0	8	8	10	10	6	6	6	6		001								STRANG S	Sec. Sec. 19	-	
-			1.4.1.1.1.1.1				0	0	10	10	0	0	0	0	6	29	6	5.8	5.8	5.8	5.8	12 🧉	20	20	22	22	19.0
31	15v2215401	HONNESH KUMA	16	16	13	16	8	8	6.5	6.5	6	6	6	6	6	29	6	5.8	5.8	5.8	5.8	28	20				
38	1SV22IS402	NAVEEN D R	12	16	16	12	8	8	8	8	6	6	6	6	6			0.0		5.0	5.0		20	20	18	18	20.8
39	1SV22IS403	SWETHA N	0	AD	11	0	0	0		0	0	0	0	0	0	19	4	3.8	3.8	3.8	3.8	22	18	18	18	18	18.6
5,	15 7 2215405	SWEINAN	9	AB	11	0	0	0	5.5	5.5	6	6	6	6	6	13	3	2.6	2.6	2.6	2.6	9	0	0	14	14	
											and the second		1.000	1.10 1.11		10000	11111				2.0		,	9	14	14	10.8
																					11. 19.19	24.4	19.6	19.6	20.2	20.2	

67.7% 63.4% 63.1% 65.1% 65.0%

(11)

PRINCIPAL SIET. TUMKUR.

and the second second second

COURSE OUTCOME

CO1. Learn the basic needs of communication system.

CO2.Interpret the communication challenges and its solution.

CO3.Identify and organize the communication system network components.

CO4.Design communication networks for user requirements.

PROGRAM OUTCOMES

P01 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

P05 Modern tool usage:Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities. **P06** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need forsustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE	SHE	RIDE	VI INS	TITU	ГЕ О	F ENG	INE	ERIN	G & TI	ECHN	OLOC	ĞΥ			
FACULTY	NAN	1E	Mrs. I	AVAN	NYA	K									
BRAN	СН]	ISE		AC	CADI	EMIC	YEAR			2	023-24	•	
COURSE	B.	E	SEM	ESTE	R	V	S	ECTI	ON						
SUBJECT	С	OMP	UTER	NETV	VORI	KINGS	5		JECT ODE			2	1CS52		
					(CO & I	PO M	IAPPI	NG						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	2	3	2	3	3	1	1	2	3	2	2	3	2	3
CO2	2	2	3	1	3	2	1	1	2	3	2	2	3	3	2
CO3	2	3	3	2	3	3	1	1	3	3	3	2	3	3	2
CO4	2	3	3	2	3	3	1	1	2	3	2	2	3	3	3
AVERAGE	2	2.5	3	1.75	3	2.75	1	1	2.25	3	2.25	2	3	2.75	2.5
		L			01	/ERAI	LLM	IAPPI	NG OF	SUB.	JECT	2.21			

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	P503
CO1	67	1.34	1.34	2.01	1.34	2.01	2.01	0.67	0.67	1.34	2.01	1.34	1.34	2.01	1.34	2.01
CO2	76	1.52	1.52	2.28	0.76	2.28	1.52	0.76	0.76	2.28	2.28	1.52	1.52	2.28	2.28	1.52
CO3	68	1.36	2.04	2.04	1.36	2.04	2.04	0.68	0.68	2.04	2.04	2.04	1.36	2.04	2.04	1.36
CO4	70	1.4	2.1	2.1	1.4	2.1	2.1	0.70	0.70	1.4	2.1	1.4	1.4	2.1	2.1	2.1
AVER.	AGE	1.41	1.75	2.11	1.22	2.11	1.92	0.70	0.70	1.77	2.11	1.58	1.41	2.11	1.41	1.75
							F	INAL	ATTA	INMI	ENT LI	EVEL	1.61			

10 her

Winder le m PRINCIPAL SIET. TUMKUR.

Roll			1CS5		023-2	1.1		FACU	2			all and the													
No.	USN	Name	omput	er Net	worki	T1	1	Г2	T3	SSIGN	MEN	NT 10 ·	+ LAB				EX	TERN	AL	14		F	inal		TC
110.			T1	T2	Т3	CO1- 20	CO 2-20	CO3- 10	CO4- 10	CO1- 7	CO2- 8	CO3- 7	CO4- 8	LAB	ASS	SEE(50)	CO1- 13	CO2- 12	CO3	CO4- 12	CO1- 40	CO2- 40	CO3- 30	CO4- 30	
1	1SV21IS001	ABDUL HADY	18	16	16	18	16	8	8	7	8	7	8	20	10	28	7	7	7	7	32	31	22	23	27
2	1SV21IS002	ABHIJITH B N	18	17	20	18	17	10	10	7	8	7	7	19	10	32	8	8	8	8	33	33	25	25	2
3	1SV21IS003	ABHISHEK BA	0	15	19	0	15	10	9	7	7	7	8	19	10	24	6	6	6	6	13	28	23	23	2
4	1SV21IS004	DAKSHITH S	19	20	20	19	20	10	10	7	8	7	8	20	10	34	9	9	9	9	35	37	26	27	3
5	1SV21IS005	SOMANAGOW DA	16	20	19	16	20	10	9	7	7	7	8	19	10	25	6	6	6	6	29	33	23	23	2
6	1SV21IS006	DEEKSHA K	19	19	20	19	19	10	10	7	8	7	8	20	10	26	7	7	7	7	33	34	24	25	2
7	1SV21IS007	DEEPIKA B M	19	19	20	19	.19	10	10	7	8	7	8	20	10	27	7	7	7	7	33	34	24	25	2
8	1SV21IS008	DHISHANTH G	0	18	20	0	18	10	10	7	8	7	8	20	10	34	9	9	9	9	16	35	26	27	2
9	1SV21IS009	GAGANA S	17	18	20	17	18	10	10	7	8	7	8	20	10	26	7	7	7	7	31	33	24	25	2
10	1SV21IS010	H M PRAJWAL	19	20	20	19	20	10	10	7	7	7	8	19	10	39	10	10	10	10	36	37	27	28	3
11	1SV21IS011	HARSHITHA P	18	20	19	18	20	10	9	7	8	7	8	20	10	36	9	9	9	9	34	37	26	26	3
12	1SV21IS012	HIMAVANTH k	12	17	15	12	17	7	8	7	6	6	6	15	10	14	4	4	4	4	23	27	17	18	2
13	1SV21IS013	KANTHARAJU	18	17	0	18	17	0	0	7	7	7	8	19	10	28	7	7	7	7	32	31	14	15	2
14	1SV21IS014	KEERTHANA K	19	20	20	19	20	10	10	7	8	7	8	20	10	31	8	8	8	8	34	36	25	26	3
15	1SV21IS015	KRISHNAMUR	12	18	20	12	18	10	10	7	8	7	7	19	10	21	5	5	5	5	24	31	22	22	2
16	1SV21IS016	MANOJ R	0	16	14	0	16	7	7	7	7	7	8	19.	10	11	3	3	3	3	10	26	17	18	1
17	1SV21IS017	MANOJ T	17	17	0	17	17	0	0	7	8	7	7	19	10	18	5	5	5	5	29	30	12	12	2
18	1SV21IS018	MANOJA S S	0	9	15	0	9	7	8	7	7	7	7	19	10	23	6	6	6	6	13	22	20	21	1
19	1SV21IS019	MARUTHI G N	16	13	0	16	13	0	0	7	7	7	8	19	10	13	3	.3	3	3	26	23	10	11	1
21	1SV21IS021	NAVYA SHREE	19	18	20	19	18	10	10	7	8	7	8	20	10	29	7	7	7	7	33	33	24	25	2
22	1SV21IS022	NINGAIAH													Cashi la	a de la	0	0	0	0	0	0	0	0	(
23	1SV21IS023	NIRNAY K	16	11	0	16	11	0	0	7	7	7	7	18	10	2	1	1	1	1	24	19	8	8	1
24	1SV21IS024	PALLAVI D	16	20	19	16	20	10	9	7	8	7	8	20	10	38	10	10	10	10	33	38	27	27	3
25	1SV21IS025	RAHUL V	0	20	19	0	20	10	9	7	7	7	8	19	10	30	8	8	8	8	15	35	25	25	2
26	1SV21IS026	RAKSHITHA L	17	19	19	17	19	10	9	7	8	7	8	20	10	37	9	9	9	9	33	36	26	26	3
27	1SV21IS027	RANGANATHA	17	16	0	17	16	0	0	7	8	7	7	19	10	24	6	6	6	6	30	30	13	13	2
28	1SV21IS028	SHREEVATHSA	18	20	17	18	20	10	7	7	8	7	8	20	10	31	8	8	8	8	33	36	25	23	2
29		SOUNDARYA I	18	19	20	18	19	10	10	7	8	7	8	20	10	23	6	6	6	6	31	33	23	24	2
30		SYED SUHAIL	14	19	17	14	19	10	7	7	8	7	7	19	10	18	5	5	5	5	26	32	22	19	2
31		THARUN M S	19	18	17	19	18	10	7	7	7	7	8	19	10	18	5	5	5	5	31	30	22	20	2
32		THEJASWINI M	16	18	20	16	18	10	10	7	7	7	8	19	10	18	5	5	5	5	28	30	22	23	2
33		VARSHA K V	17	20	20	17	20	10	10	7	8	7	8	20	10	18	5	5	5	5	29	33	22	23	2
34		VARSHINIMEG	19	19	20	19	19	10	10	7	8	7	8	20	10	33	8	8	8	8	34	35	25	26	3
35		VINUTHA H N	20	20	20	20	20	10	10	7	8	• 7	8	20	10	38	10	10	10	10	37	38	27	28	3
36	1SV2118036	VISHNU R	19	20	20	19	20	10	10	7	8	7	8	20	10	32	8	8	8	8	34	36	25	26	30

1 (102)

PRINCIPAL

37	1SV21IS037 YASHAS D R	18	19	19	18	19	10	9	7	8	7	8	20	10	29	7	7	7	7	32	34	24	24	29
																	17.1			26.8	30.2	20.5	20.9	
														and a star		Sec. 1				67%	76%	68%	70%	
																1.00				1	2.K		12-312 13-1	

			-		1	LATER	ALE	NIKY	STUDI	EN121	ISE	600 C.	auto and	Wit Cat	11111					1		1.		Last Start of	12.15
Roll	USN	Nome	1CS3	Sem: IV	023-2	ODD		FACU	LTY	: Lava	nya K														
No.	USN	Name	omput	er Net	worki	T1		Т2	T3	SSIGN	MEN	NT 10 -	LAB		1 Section		EX	TERN	AL			Fi	inal		T
		Section Constants	T1	T2	T3	C01-	CO	CO3-	CO4-	CO1	CO2	CO3-	CO4-	lab	ass	SEE(CO1	CO2-	CO3	CO4	C01-	CO2-	CO3-	CO4-	TA
1	1SV22IS400	CHETHAN V	14	16	0	14	16	0	0	7	7	7	8	19	10	36	9	9	9	9	30	32	16	17	24
2	1SV22IS401	HONNESH KUN	13	17	0	13	17	0	0	7	7	7	8	19	10	20	5	5	5	5	25	29	12	13	20
3	1SV22IS402	NAVEEN D R	15	14	17	15	14	10	7	7	7	7	8	19	10	21	5	5	5	5	27	26	22	20	24
4	1SV22IS403	SWETHA N	11	17	0	11	17	0	0	7	6	6	6	15	10	24	6	6	6	6	24	29	12	12	19
				1944	114	A Showing				1.				Ser Se	A STATE		1.00		140.7		27	29	16	16	12.5

66% 73% 52% 52%

(herz

March Land 13% 52%

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

DEPARTMENTOFINFORMATIONSCIENCE ANDENGINEERING

COURSE OUTCOME

CO1:Identify, analyze and define database objects, enforce integrity constraints on a database using RDBMS

CO2: Use Structured Query Language (SQL) for database manipulation and also demonstrate the basic of query evaluation.

CO3:Design and build simple database systems and relate the concept of transaction, concurrency control and recovery in database.

CO4: Develop application to interact with databases, relational algebra expression.

CO5. Develop applications using tuple and domain relation expression from queries.

PSO1: To Create, select, and apply appropriate techniques, resources, modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PSO2: To manage complex IT projects with consideration of the human, financial, ethical and environmental factors and an understanding of risk management processes, and operational and policy implications.

PSO3: Acquaint module knowledge on emerging trends of the modern era in computer science and engineering.

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage:Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities. **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need forsustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the

engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

					7 17					x.					
FACULTY	NAMI		r. Cha	aran I	× V	<u></u>	in godi	6.0.03	<u>}</u>	<u> </u>					
BRAN	СН		IS	SE		AC	ADE	MIC Y	EAR			20	23-24	i ji ka ca	296
COURSE	B.E		SEMI	ESTE	R	v	SE	CTIC	DN			B		na inti na inti	Causii Causii
SUBJECT			DB	MS		tslav. obit			JECT DDE		01,00 015,05	21	ICS53		
					CC) & P	O MA	PPIN	G						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	3	2								2	3	1	
CO2	2	2	3	1								2	2	2	
CO3	2	2	2	2								1	2	2	
CO4	1	3	1	2								2	2	2	
C05	2	3	2	1								3	2	2	
AVERAGE	2	2.6	2.2	2								2	2.2	1.8	
]							ADDI		F SUB	БСТ	2.11			

A THE PARTY OF			_	222017	24						ŀ			i												
			E			+		ł				2023.	2023-2024	-	F	uno	L	111								
Koll	NSN	Nome	IA	IA MARKS		T	17	-	T3	H	Assign 10 +		Seminar 20 = 30/5)= 30/5	+	ann	-	AN	MEO	F THE	NAME OF THE STAFF			Dr. Charan K		
No.			T1 (20)	T1 T2 T3 (20) (20) (20)	T3 C	CO1- C	C02- C	4	1	cos- co	C01- CC		CO3- CO4-	4- COS-			Exter		Irks				FINAL			L
	1SV21IS001		15	15				15	10 10	15	-	-				10	10	10	- C04	- CO5-	. CO1-36	6 C02-31	CO3-31	C04-31	C05-31	TOTAL
2 151	1SV211S002	ABHIJITH B N	17	16		+	-	+	+	+		9 9 9	+	+	+		9	9	9	9	25	20	20	"	10	1.0
+		ABHISHEK BASAVARAJ ARALI AB	AB	16	20	0	+	-	+	-	+	+	+	+	+	-	9	9	9	9	27	20	20	22	3 6	4.12
+		DAKSHITH S	20	20	20 2	20 1	-	+	-	+		0 4	+	+	32	_	s	S	5	s	12	20	21	21	27	187
+		DEPUGNANI	18	19	20 1	18 9	9.5 9	9.5	-	+	+	+	+	+	+	-	-	-	2	2	31	23	23	23	23	24
+		DEENSHAK	20		-	-	10 1	10	-	-	+	+	+	0	53	s.	9	9	9	9	29	21	21	22	22	27.8
+		DEEPINABM	20	20 2	20 2	20 1	10 1	10 1	-	-	+	+	+	0	18	4	4	4	4	4	30	20	20	20	20	27 1
+	000CTTZACT	DHISHANTH G PATEL	20		19 2	20 5	6	-	+	+	+	+	+	•	28	9	5	S	5	5	32	21	21	21	21	72.4
+	600STIT	GAGANA S	20	17 2	20 2(20 9	\vdash	-	+	+	+	+	+	•	32	ø	9	9	9	9	32	21	20	10	17	4.02
+	I DIDGITZACI	KUMAR		16 2	20 17	7 8	\vdash	+	+	+	+	+	+	•	28	9	2	2	2	2	32	22	23	23	23	4.02
+		HAKSHITHA P		17 2	20 20	0 8.5	5 8.5	+	-	+	+		0 4	0	33	2	5	5	5	S	30	19	19	21	10	27.1
-			_		7 14	4 9	10	-	+	-	+	+		0	97	s .	5	5	S	5	31	19	19	21	50	22.2
-	_		-			-	5 8.5	5 8	-		0	+		0 4	24	5	4	4	4	4	25	19	20	18	17	19.6
15 1SV2		Day		_	_	-	-	10	10	-	0	0	0	2	40	~ ~	•	. 0	9	9	Ξ	20	20	20	21	18.5
16 1SV2	1SV211S016 N	T	_			+	-	5 10	10	9	9	9	0	9	27	0 4	•	•	9	9	34	21	20	22	22	23.8
17 1SV2		MANOJ T	_	_		+	\rightarrow	-	2	9	0	9	9	9	10	~ ~	•	• •	9.	0	26	21	21	22	22	22.4
18 1SV2		MANOJA S S	_	_		-	~	-	2	9	0	9	9	9	×	1 -	7 t	4 (4	4	8	17	17	18	17	15.2
19 1SV2		~		14 18		+	+	6	-	9	9	9	9	0	0			~ ~	2	~	10	17	17	19	16	15.8
20 1SV2	ISV21IS021 N.	KS				+	+	10	-	9	9	0	9	9	18	-	4 0	1 0	1	7	∞	15	15	17	12	13.0
	ISV21IS023 NJ			70 70		-	0	2	-	9	9	9	9	9	33		1 -	11	11	~	10	14	14	18	16	14.2
22 ISV21	1SV211S024 P/		_			•	•	0	-	9	9	9	9	9	10				- ,		31	22	22	23	23	23.8
1SV2	1SV21IS025 R/			10 17		S	s	8.5	-	9	9	9	9	9	37	1	1 -	1 1	~ (~ 1	∞	~	∞	8	8	8.2
1SV21	1SV211S026 R/	HAL				∞	-	10	9.5	9	9	9	9	+	29					-	13	18	18	21	23	18.6
1SV21	1SV211S027 RA	RANGANATHA G N 20	_			+	∞ (0	2	9	9	9	9	+	35	-	4.4	44	0	~	12	19	18	21	21	18.2
1SV21		MB				+	×	2	2	9	9	9	9	-	21	4	7.6	76	1.1	4.4	13	19	18	19	-	18.1
ISV21						20	× =	00	9.5	9	9	9	9	9	31	9	8	~ ~	2 00	0./ 8	38	23	22	24	+	24.3
ISV21		SYED SUHAIL AHAMED 20				0	2 0	-	2 0	0	9	0	9	9	27	5	6.6	6.6	6.6	6.6	30	3 6	77	5 5	+	23.9
1SV21IS031	_			1		9.5	0 50	20	8 40	9	9	9	9		27	5	-	8	∞	8	31	33 62	3 5	27	23	23.8
15 V 2115032		THEJASWINI M 16	6 18	18	16	0	0	0			•	0	•	5	24	5	3.6	3.6	3.6	3.6	29	0	10	101	+	24.5
15V2115033		VARSHA K V 20	1		0	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	20	0 4	•	•	0	+	32	9	6.8	6.8	6.8	6.8	28	+	+	3 12	51 6	20.9
151/2115031		VARSHINIMEGHA 18	8 16	20	18	∞	∞	10	20			•	•	+	52	-	-	5.4	5.4	5.4	10	19	10	10	+	0.00
1SV7115035	_	NH	8 17	20	18	8.5	8.5	10	10	2	0 4	0 4	0	+	31	+		7.2	7.2	7.2	30	+	+	+	+	18.3
DEDETITA OF			17	20	20	8.5	8.5	10	01			•	•	+	32	-	-	5.2	5.2	5.2	30	20	+	+	+	1.07
1CUCIT2 VOL	_		17	20	20	8.5	8.5	10	10			•	•	+	-	+	5.4 5	5.4	5.4	5.4	31	+	20	10	+	4.77
101-01-01-010		CHEIHAN V 20	15	20	0	7.5	7.5	10	10			-	0	+	-	2	-	6.2	6.2	6.2	-	+	-	+	+	0.77
ISV2215402		NAVEEN D. D.	12	15	0	9	9	7.5	6.5		2		0 4	+	-	+	+	-	5.8	5.8	10	-	-	22	22	18 5
1SV221S403					12	5	s	10	∞	0	5	~			10	+	+	+	-	5.8	10	18	-	+	+	16.6
		15	12	20	0	0	0	10	5.5	6	9	0		+	\perp		+	+	-	_	24	15 1	15	-	+	18.2
									1		1		-	-		-	2.6 2	2.6 2	2.6	2.6	13	6	0	╀	+	17.6
																				ľ	t	\dagger	+	-	14 1	0.7

Accel Duri

COURSE OUTCOME

CO1. Apply the knowledge of searching and reasoning techniques for different applications. **CO2.** Have a good understanding of machine leaning in relation to other fields and fundamental issues and challenges of machine learning

CO3.Apply the knowledge of classification algorithms on various dataset and compare results **CO4**.Model the neuron and Neural Network, and to analyze ANN learning and its applications. **CO5**. Identifying the suitable clustering algorithm for different pattern.

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **P05** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering
- solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- P010 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

P012 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	NAM	IE 1	Mrs. N	AERL	JIN B										
BRAN	СН]	SE		A	CADE	MIC	YEAR	2		2	023-24	ŀ	
COURSE	B.	E	SEM	ESTE	R	V	S	ECTIO	ON					4	
SUBJECT		RTIFI							JECT ODE	Г		2	1CS54		
					С	0 & 1	PO M.	APPIN	NG						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	2	2	2	2		1	1	1		2	3	2	1
CO2	3	3	2	3	2	2		1	2	3		2	3	3	2
CO3	2	2	3	2	2	3		1	2	2		2	2	3	1
CO4	3	3	3	2	2	2		1	1	2		2	3	3	2
CO5	2	2	3	1	1	2			1	2		2	3	3	2
AVERAGE	2.6	2.4	2.6	2	1.8	2.2		1	1.4	2		2	2.8	2.8	1.6

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	68	2.04	1.36	1.36	1.36	1.36	1.36		0.68	0.68	0.68		1.36	2.04	1.36	0.68
CO2	65.3	1.95	1.95	1.30	1.95	1.30	1.30		0.65	1.30	1.95		1.30	1.95	1.95	1.30
CO3	65.5	1.31	1.31	1.96	1.31	1.31	1.96		0.65	1.31	1.31		1.31	1.31	1.96	0.65
CO4	61.9	1.85	1.85	1.85	1.23	1.23	1.23		0.61	0.61	1.23		1.23	1.85	1.85	1.23
C05	62.5	1.25	1.25	1.87	0.62	0.62	1.25			0.62	1.25		1.25	1.87	1.87	1.25
AVER	AGE	1.68	1.54	1.67	1.29	1.16	1.42		0.65	0.90	1.28		1.29	1.80	1.80	1.02
							F	INAL	ATTA	INME	ONT LE	VEL	1.35			

Mande le 20 PRINCIPAL SIET. TUMKUR.

5

Bul B

Sub: AIML		E) EVEN	EN	NAME	NAME OF THE	ESTAFF	FF	N.	Mrs. Merlin R	
IA MARKS T1 T2	T3 Assign 20 + Quiz 20 = 40(Compress to		SEE				FINAL			
Name T1 T2 T3 C01- C02- (20) (20) (20) (20) 15 15	CO3- CO4- CO5- CO1- CO3- CO3- CO CO5- 15 15 15 6 6 6 4-6 6	SEE (50)	CO1- CO2- 10 10	CO3-	CO4-CO5- 10 10	- CO1-	C02-31	3-31	CO4- CO5-	5- AVG
	9 9 6 6 6 6	6 30	6 2	2	-	30	18	17	-	7 19.6
ABHISHEK BASAVARAJ AB 20	6 6 6	-				31	21			
DAKSHITH S 20 20 20 20	10	6 24	5 6	+	-	= :	22	22 22	22 2	
DANESHWARI S N	5 6 6 6 6	+	+	+	+	55	21	-	-	+
20 19 17	10 6 6 6 6	+	0 4 5 0	0 5	2 2 2	20	21	-	10 17	20.8
DEEPIKA BM 20 20 17 20 DHISUANTH C DATTY 20 20 17 20	9 8 6 6 6 6	-	-	6	-	31	17	23 23	12 60	+
GAGANA S 20 20 20 20 20 20 20 20 20 20 20 20 20	10	6 31	6 8	80	8	30	23	+	+	+
H M PRAIWAI KIIMAP 20 20 20 20	10 10 6 6 6		7 5	5	-	33	21	+	21 2	+
HARSHITHA P 18 20	10 6 6 6 6	+	5 6	9	6 6	31	22	22 2	22 22	
20 10 10		+	+	9	-	29	22			
VT AB 15 17 0		+	-	6	-	29	19			
20 20 16		+	+	∞	8	12	21			
KRISHNAMURTHY P G AB 19 19 0 10		+	+	-	-	28	23		23 23	
MANOJ R AB 16 10 0	5 5 6 6	+	+	•	+	12	22	-	-	19.8
	7 8 6 6 6 6	0 10	v 4	7 4	7 7 7	0	16	+	+	+
AB 10 9	5 6 6 6 6	+	+	9	+	~ ~	17	11 11	16 17	+
NAVVA SHIPEEV S 12 10 7	7 8 6 6 6 6		2 4	-	-	~ ~	17	-	+	15.5
2 10 19 18 16 9 AD 10 AD 20 AD	9 9 6 6		7 1	-	-	29	16	+	+	+
	0 6 6 6 6			1	1 1	8		-	-	+
AB 19 19 0 10	10 10 6 6 6 6 1	+	+	-	-	33				
18 19 13 18 10	9	6 26	5 4	-	-	11	-	-		
19 0 9	10 9 6 6 6 6		-	7.6	7.6 7.6	14	23	19 1 23 23	24 23	20.4
17 20 17 17 10	10 6 6 6 6			∞	8	33	-	+	4 24	-
15 18	9 9 9 9 0 0T /	+	-	9.9	-	30				
18 16 17		+	+	-	-	32	-	-	-	-
M 20 20 13 20 10	7 6 6 6 6 6 6	+	4 3.6	+	+	27	+	+	-	+
19 20 19 19	9 10 6 6 6	31 24	+	+	+	33	+	-	0 19	23.4
3HA 17	9 6 6 6	+	4.0 C	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5.4 5.4	30	+	+	-	+
20 18	10 6 6 6 6	+	5 5.2	-	+	30	27	27 27	77 7	24.2
20 20 20 20	10 6 6 6 6	5 27	-	+	+	31	-	+	+	+
20 20 20 10	10 10 6 6 6 6	31		+	+	32	+	+	+	+
TIMAD 10 12 12 12 10 10	~	29	6 5.8	-	-	12	22	21 19	6 10	+
9 81 8 CI 91	5 3 6 6	29	6 5.8	5.8 5.	-	30	-	-	-	+
L /1 07 CI /1	+	19	4 3.8	3.8 3.8	8 3.8	27	-	-	+	+
14 AB 10 14 0	-	13	3 2.6		-	23	6	+	-	+
	and the second s					24.5	20.2 2	20.3 19.2	.2 19.4	-
67) 0. U	T-W	3	Part -	2		68%	65.3% 65	65.5% 61.9	61.9% 62.5%	%
	SIET. TUMKUR	NCIPAL TUMKU	٠. «							
			A STATE OF S							

COURSE OUTCOME

CO1. To know the meaning of engineering research.
CO2.To know the procedure of Literature Review and Technical Reading.
CO3.To know the fundamentals of patent laws and drafting procedure.
CO4. Understanding the copyright laws and subject matters of copyrights and design.
CO5. Understanding the basic principles of design rights.

PROGRAM OUTCOMES

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

P012 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	NAMI	E	Mrs. I	MERL	IN B										
BRANCH				ISE		AC	CADE	MIC	YEAR			2	023-24		
COURSE	B.	E	SEN	1ESTE	ER	v	S	ECTI	ON					•	
SUBJECT	R	ESEA	RCH	METH	IODO	LOGY	7		BJECT ODE	Г		21	RMI5	6	
					C	D & P	O MA	PPIN	G						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
CO1	3	1	2			2		1	2	2	2	3	2	2	2
CO2	2	2	3	2	3	1	1	2	2	3	1	2	2	3	2
CO3	2	2	3	2	3	1	1	2	2	3	1	2	2	3	2
CO4	2	2	3	2	2	2		3	2	2	1	3	2	3	3
CO5	3	1	3	3	3	1	1	3	2	2	2	3	2	2	3
AVERAGE	2.4	1.6	2.8	2.25	2.75	1.4	1	2.2	2	2.4	1.4	2.6	2	2.6	2.4

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSOT	PSO2	PSO3
C01	65.1	1.95	0.65	1.30			1.30		0.65	1.30	1.30	1.30	1.95	1.30	1.30	1.30
CO2	69.1	1.38	1.38	2.07	1.38	2.07	0.69	0.69	1.38	1.38	2.07	0.69	1.38	1.38	2.07	1.38
CO3	68.5	1.37	1.37	2.05	1.37	2.05	0.68	0.68	1.37	1.37	2.05	0.68	1.37	1.37	2.05	1.37
CO4	70.0	1.4	1.4	2.1	1.4	1.4	1.4		2.1	1.4	1.4	0.70	2.1	1.4	2.1	2.1
C05	69.9	2.09	0.69	2.09	2.09	2.09	0.69	0.69	2.09	1.39	1.39	1.39	2.09	1.39	1.39	2.09
AVER	RAGE	1.64	1.10	1.92	1.56	1.90	0.95		1.52	1.37	1.64		1.78	1.37	1.78	1.65
							F	TINAL	ATTA	INME	ENT LE	EVEL	1.55			

D. B. -42

PRINCIPAL SILE F. TUMKUR.

Г	Т		AVG	21.8	22.6	19.0	27.2	23.0	.2	24.8	22.0	24.2	24.6	7.07	2	23.8	20.4	19.0	4.0	17.0	2	22.6	12.8	20.0	212	21.0	21.6	23.2	2	20.6	18.8	23.8	23.0	25.8	23.6	20.2	23.8	21.8	16.4			
	B		-	+	+	-						+	+	-	+		-	-			+	+	+	+	+	-			+	+	+	+	-	-		+	+	-			~	
	Mrs. Merlin B		1 CO5-31	21	21	21	25	23	19	23	22	22	23	24	24	22	23	21	22	20	2	21	10	24	20	24	20	22	20	202	21	52	.22	24	22	23	24	21	18		69.9%	
	Mrs. 1		C04-31	21	21	21	25	23	20	23	22	22	23	24	24	22	23	21	23	21	52	21	10	24	20	24	20	22	19	20	21	21	22	24	22	23	24	21	19	21.7	70.0%	
		AL	CO3-31	21	21	21	25	21	20	22	21	22	23	20	22	22	22	21	22	16	20	21	17	24	20	23	20	22	20	33	20	23	22	24	22	21	22	21	17	21.2	68.5%	
		FINAL	C02-31	20	20	21	25	23	20	23	22	52	23	23	22	22	20	22	21	16	21	21	18	24	20	22	19	22	20	19	61	23	21	24	22	22	52	21	18		69.1%	
	AFF		CO1-36 C	28	28	11	34	25	29	31	22	31	32	29	14	31	13	12	13	=	13	12	0	2 2	27	4	28	88	30	2 2	11	8	1	4	29	3	8	3	_	23.4 2	_	
	NAME OF THE STAFF		COS- CC	S	S			7	4	7	+	+	~ ~	-	-		7	6	7		+	+	+	0 0	+			-	+					-	-	+	-	-		2	6	
	OF TH		10 CO4- C	5	5	5	6	2	4	-	-	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-			7	6		-	+	-	4 0	-	-			_		+	-	-		-	-	-	+	-	4		-	ł
	AME		CO3- CC	+	5				-		+	0 1	+	-							+	-		-	-		4		+				9	8	9		20 1	2	4			٢.
	N	SEE		5					-		+	+	-	-			7	9	2	-	+	+	4 0		4	~	4	9	9		2	8	9	∞	9		× 1	2	4	*		IPAL
	-	S	1- C02-				-	-	-	-	+			+		9	7	9	-	S			4 0	0	4	8	4	9	9 4		2	8	9	∞	9		~ .	2	4			PRINCIPAL SIET TIME
	EVEN		SEE COI (50) 10			25 5	-	-	18 4	-	-	34 0			0 8	0 6	6 7		_	5 5	-	+	* ×		4	8 8	4	-	9 4		S	8		-	-	-	+	-	4		-	
-		ess to	CO5- SI 6 (5	6 2			-	-	+	+	+	0 4	+	6 36	6 40		6 36	-	+	6 26	+	17 0	+	+	-	6 38		-	6 32	+	6 27			+	+	+	20 0	+	6 20		9	5
(ISE)	4	0(Compr	c04- C 6	9	9	9	9	9	9	0	9	0 4	0	9	9	9	9	+	+	+	+	+	0 4	+		9	-	+	0 4	+		9	+	+	+	+	+	+	0			
V SEM	2023-2024	Assign 20 + Seminar 20 = 40(Compress to 30)	c03- (6	9	9	9	9	9		9	0 4	0 4	0	9	9	9	9	9	9	. 0	0 4	0 4	2 4	9	9	9	9	0	0 4	9	9	9	-	+	+	0 4	+	+	0			
VS	202	0 + Semir	c02- 6	6	9	9	9	9	0	9	0 4	2	0	9	9	9	9	9	9	0	0 4	0 4	0 0	9	9	9	9	9	0 9	9	9	9	9	0	0 4	0 4			0			1
		Assign 2	c01- 6		9	0	0	9			0 4				9	9	0	0	0	0	0 4	0 4	0	9	9	9	9	0 4	0 9	9	9	9	9	0	0 4	0 4			0		0	A
		T3	0	10	10	10	10	0 0	2	10	10	10	10	8	10	10	10	6	2 0		10		10	10	10	10	2	20	0 0	10	10	∞	10	01	10	10	2 9	2 0	•)	E
		-	- CO4- 15	10	10	10	10	10	2	10	101	10	10	7	10	10	10	6	10	2 0	10	2.0	10	10	10	10	10	2 1	- 6	10	10	-	10	01	10	2 9	2	2 0	~	•		
		12	- CO3-	10	+	+	+	-	+		10	10	6	2	∞	2	9	9	2		10	2	10	6	10	6	10	01 8	0	6	6	6	10	10	N N	~ ~	10	-				
			1- CO2- 15	-	+	+	+	-	+		+	+	-		+	-		2	~ 4	~ ~	10	~ ~	10	10	10	~	6	2 ~	0 00	10	∞	6	6		2 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9	~	•			
	156	S TI	3 COI- 0) 20	-	-	-	-	10 12	+	10	-	-	0 19		-	-	-	-		-	-			0		-	-	1	-	19		-	5	-	-	-	-		-			
	21RMI56	IA MARKS	T2 T3 (20) (20)	-+	-	07 07	_	-	+	-	-	-	19 20		-	-	-	17 10	10 10	-	-	-	-	19 20		-	19 20	-	-	19 20	-	-	07 6	-	-	-	-	-	-			
	2	IAN	T1 T2 (20) (20)	-		AB	-	-	-	-	-	-	19	_	-	_		AB			-	-	-	AB 1		-	1 1 1	-	-	19 1	-	_	61 00	_	-	1	-	-				0
				X	-		I C N	NCD		. 0				K	TVD	-	-			T		-			. (-	+				-	-			T	-	-				e	L.
		Name		HAD	THBN	NTTU S	C HIM	HAK	ABN	ANTH	VAS	AJWA	ITHA I	ANTH	IARAJI	HANA		4 F	224	HIGN	SHRE	YK	UD	>	THAL	NATHS	VADA	UHAIL	NMS	WINI N	AKV	NIME	NHA	DR	NN	SHKU	VDR	N			0	A
	RM	-		ABDUL HADY	ABHIJITH B N	DAKSHITU S	DANFSHWADICN	DFFKSHA K	DFFPIKARM	DHISHANTH G	GAGANA S	H M PRAJWAL	HARSHITHA P	HIMAVANTH K	KANTHARAJU V T	KEEKIHANA K S KRISHNAMI IDTHV	d I UNVIN	T IONAM	MANOIASS	MARUTHI G N	NAVYA SHREE K S	NIRNAY K	PALLAVI D	RAHUL V	RAKSHITHAL	SHPEEVATHS M	A A A A A A A A A A A A A A A A A A A	SYED SUHAIL	THARUN M S	THEJASWINI M	VARSHA K V	VARSHINIMEGHA	VISHNITR	VASHAS D R	CHETHAN V	HONNESH KUMAR	NAVEEN D R	SWETHA N				Z
	Sub: RM			-	-	-	-	-	-	-				-	-	-	-	-						-	-	-	-				-	-	-	-	-							0
		NSI		1SV2115001	15V2115002	FUOSILEAST	SOOSIICASI	1SV2115006	1SV211S007	1SV211S008	1SV211S009	1SV211S010	1SV21IS011	1SV21IS012	EIOSIIZASI	+INCIIZACI	STOCITZACI	LIUSIICASI	1SV211S018	1SV211S019	1SV211S021	1SV211S023	1SV21IS024	1SV21IS025	1SV211S026	1705112751	620SIL2ASI	1SV211S030	1SV211S031	1SV21IS032	1SV211S033	15V2115034	1SV211S036	1SV211S037	1SV22IS400	1SV22IS401	1SV22IS402	1SV22IS403				
	+	Roll	No.	+	21 2	+	1	1	-			10 1S		+	14 15	+	+	-	+	-				-	-	-	-	-		-	-	-	+	+	-			-	1			
	L	2	-	Ľ	1	Ľ	Γ	Ľ	Ľ	1~	1	-	-	-1.		1-	1-	11	18	19	20	21	22	23	24	24	27	28	29	30	31	32	34	35	36	37	38	39				

- -

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY SIRA ROAD, TUMKUR- 572 106.

Department of Information Science and Engineering

COURSE OUTCOME

CO1. Appraise the theory of Artificial intelligence and Machine Learning

CO2. Illustrate the working of AI and ML Algorithms.

CO3. Demonstrate the applications of AI and ML.

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

P05 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

P010 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

P011 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

P012 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

1 Carl	COLLEGE	SH	RIDEVI INSTITUT	E OF EN	GIN	NEERING & T	ECHN	NOLOGY
	FACULTY	NAME	Dr.R.RAJESWAR	Ι				
	BRAN	СН	ISE	A	CAD	EMIC YEAR		2023-2024
	COURSE	B.E	SEMESTER	VI1		SECTION		A .
	SUBJECT		CIAL INTELLIGE		D	SUBJECT C	ODE	18CS71

					CO-	PO-P	SOI	Mapp	ing						
COa						Po						64.		PSOs	1
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	3	3								2		3	3	3
CO2	3	3	3	2	2	2					2	2	3	3	3
CO3	3	3	3	2	2	2					2	2	3	3	3
Average	3.0	3.0	3.0	2.0	2.0	2.0		1414-1			2.0	2.0	3.0	3.0	3.0

CO AND PO ATTAINMENT

and the second

						A	TTAI	NME	NT TA	BLE						
COs	AVG	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	30.8	0.92	0.92	0.92								0.60		0.92	0.92	0.92
CO2	34.3	1.02	1.02	1.02	0.68	0.68	0.68					0.68	0.68	1.02	1.02	1.02
C03	32.3	0.96	0.96	0.96	0.65	0.65	0.65					0.65	0.65	0.96	0.96	0.96
	RAGE	0.97	0.97	0.97	0.66	0.66	0.66					0.65	0.66	0.97	0.97	0.97
			- I	- L	1	Final	attainn	nent le	vel 0.78	8				1991,2991		

Staft Incharge

HOD/ISE

Sri Shridevi Charitable Trust (R.) SHRIDEVI INSTI **TE OF ENGINEERING AND TECHN** LOGY

Sira Road, Tumkur - 572 106, Karnataka, India.

SHRIDEVI Phone: 0816 - 2212629 | Principal: 0816 - 2212627, 9686114899 | 1616143. 0010 Email: info@shrideviengineering.org, principal@shrideviengineering.org | Website: www.shrideviengineering.org

(Approved by AICTE, New Delhi, Recognised by Govt. of Karnataka and Affiliated to Visvesvaraya Technological University, Belagavi)

			1800	371	NT OF I	:IV 'B'	SEC	T										
Roll	USN			AL	A dem	T1	T2	T3	2022-23	A strange to the state of the state	LAIM	-		FAC	ULTY:D	r Rajesv	vari.R	
No.	USIN	Name		TAN				T	ASSIC	GNMEN	T (10)		EXT	ERNAL			Final	
			T1(20)	T2(20)	T3(20)	CO1- 20	CO2- 20	CO3- 20	CO1-2	CO2-2	CO3-2	SEE (60)	CO1- 20	CO2- 20	CO3- 20	CO1- 20	CO2- 20	CO3-
1	1SV20IS001	BHAVANA S	17	26	21	17	26	21	3	3	4	42						20
2	1SV20IS002	DARSHAN NAYAK B M	18	30	15	18	30	15	3			-	14.0	14.0	14.0	34.0	43.0	39.0
3	1SV20IS003	DEEPA R ARADHYA MATA	19	29	26	19	29			3	4	33	11.0	11.0	11.0	32.0	44.0	30.0
4	1SV20IS004	DHAVALASHREE B JAIN	29	30				26	3	3	4	35	11.7	11.7	11.7	33.7	43.7	41.7
5		HEMANTH SANGAM M			27	29	30	27	3	3	4	40	13.3	13.3	13.3	45.3	46.3	44.3
6			23	5	17	23	5	17	3	3	4	2	0.7	0.7	0.7	26.7	8.7	21.7
		KEERTHANA N	17	26	23	17	26	23	3	3	4	27	9.0	9.0	9.0	29.0	38.0	
7	1SV20IS008	NETHRAVATHI K E	16	0	23	16	0	23	3	3	4	0	0.0					36.0
8	1SV20IS009	NITHIN D G	20	19	4	20	19	4	3					0.0	0.0	19.0	3.0	27.0
9	1SV20IS010	REKHA	23	26	25	23	26			3	4	22	7.3	7.3	7.3	30.3	29.3	15.3
10	1SV20IS011	REVATHI P O	26					25	3	3	4	34	11.3	11.3	11.3	37.3	40.3	40.3
		SHESHADRI T		26	30	26	26	30	3	3	4	42	14.0	14.0	14.0	43.0	43.0	48.0
			9	29	15	9	29	15	3	3	4	32	10.7	10.7	10.7	22.7	42.7	29.7
		SUDEEP R V S	13	22	17	13	22	17	3	3	4	29	9.7	9.7	9.7	25.7	34.7	
13	1SV20IS014	THOUHID J K	18	26	12	18	26	12	3	3	4	2	0.7	0.7	0.7	21.7	29.7	30.7 16.7

PRINCIPAL SIET. TUMKUR.

ESTD: 2002

400.3

30.8

446.3

34.3

420.3

32.3

Department of Information Science and Engineering

COURSE OUTCOME

CO1. Design the User Interface, design, menu creation, windows creation and connection between menus and windows.

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

P05 Modern tool usage:Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities. **P06** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need forsustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

P010 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE	SHR	RIDEV	I INSTIT	UTE	OF E	NGIN	EER	ING 8	& TEO	CHNO	LOGY	Y			
FACULTY	' NAN	ЛЕ	MR. SUI	THAN	R										
BRAN	СН		IS	E		AC	ADE	MIC	YEAI	2		2	023-24		
COURSE	B	.E	SEME	STER	2	VII	SI	ECTIO	ON						
SUBJECT		USEF	R INTERF	ACE	DESI	IGN			JEC DDE	Γ		18	BCS734	4	
					со	& PO	MAI	PPINO	Ĵ						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	3	1	3			2	1	1	1	2	2	2	2
AVERAGE	3	3	3	1	3			2	1	1	1	2	2	3	3
				<u></u>	OVE	RALI	L MA	PPIN	G OF	' SUBJ	ЕСТ	1.66			

CO - PO ATTAINMENT

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	P802	PSO3
CO1	71.6	2.14	2.14	2.14	0.71	2.14			1.43	0.71	0.71	0.71	1.43	1.43	1.43	1.43
AVE	RAGE	2.14	2.14	2.14	0.71	2.14			1.43	0.71	0.71	0.71	1.43	1.43	1.43	1.43
							F	INAL	ATTA	INMI	ENT LI	EVEL	1.42			

WD2

Mundus Lumpetter PRINCIPAL SIET. TUMKUR.

Sri Shridevi Charitable Trust (R.)

SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY

Sira Road, Tumkur - 572 106, Karnataka, India.

SHRIDEVI E D U C A T I O N Email: info@shrideviengineering.org, principal@shrideviengineering.org | Website: www.shrideviengineering.org | Website: (Approved by AICTE, New Delhi, Recognised by Govt. of Karnataka and Affiliated to Visvesvaraya Technological University, Belagavi)

			18CS734	Sem:VII	2023-24	ODD					
Roll No.	USN	Name	SUB:Us	er Interfac	e Design	T1+T2+T3	ASSIGN	EXTE	RNAL	Final	
110.			T1	T2	Т3	CO1-90	CO1-10	SEE(60)	CO1-60	CO1-160	TOTAL AVG
1	1SV20IS001	BHAVANA S	29	29	29	87	10	41			
2	1SV20IS002	DARSHAN NAYAK B M	15	28	29	72	10	41	41	138	138
3	1SV20IS003	DEEPA R ARADHYA MATA	29	29	29	87		35	35	117	117
4		DHAVALASHREE B JAIN	29	29	29	87	10	38	38	135	135
5		HEMANTH SANGAM M	20	8			10	39	39	136	136
6		KEERTHANA N	29	29	22	50	10	16	16	76	76
7		NETHRAVATHI K E	25		29	87	10	49	49	146	146
8		NITHIN D G		0	29	54	10	39	39	103	103
9	1SV20IS010		17	23	18	58	10	15	15	83	83
10		REVATHI P O	28	28	29	85	10	30	30	125	125
11		SHESHADRI T	29	29	29	87	10	38	38	135	135
			17	23	23	63	10	22	22	95	95
12	the second s	SUDEEP R V S	20	24	27	71	10	24	24	105	105
13	1SV20IS014	THOUHID J K	21	17	27	65	10	21	21	96	96

DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING

PRINCIPAL SIET. TUMKUR.

9.3125

71.6%

9.3125

71.6%

ESTD: 2002

Sri Shridevi Charitable Trust (R.) SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY

Sira Road, Tumkur - 572 106, Karnataka, India.

Phone: 0816 - 2212629 | Principal: 0816 - 2212627, 9686114899 | Telefax: 0816 - 2212628

Email: info@shrideviengineering.org, principal@shrideviengineering.org | Website: www.shrideviengineering.org (Approved by AICTE, New Delhi, Recognised by Govt. of Karnataka and Affiliated to Visvesvaraya Technological University, Belagavi)

DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING

COURSE OUTCOME

CO1. Understand the selection, prioritization and initiation of individual projects and strategic role of project management.

CO2. Understand the work breakdown structure by integrating it with organization.

CO3. Understand the scheduling and uncertainty in projects.

CO4. Understand risk management planning using project quality tools.

CO5. Understand the activities like purchasing, acquisitions, contracting, partnering and collaborations related to performing projects.

CO6. Determine project progress and results through balanced scorecard approach

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities. PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning

COLLEGE		· .	SHRI	DEVI	INST	FITU	ГЕ О	F ENG	INEE	RING	& TE	CHNC	DLOG	Y	
FACULTY	NAM	E	e de la			AJAY	(HIF	REMAT	Н						
BRANG	СН	·	Ι	SE		А	CAD	EMIC	YEA	R		2	2023-2	4	
COURSE															
SUBJECT	P	ROJ	ECT M	IANA	GEM	IENT		SUBJ	ECT (CODE		1	8MN7	752	
	PO1	PO2	PO3	PO11	PO12	PSO1	PSO2	PSO3							
C01	2							2			2		2		
CO2		3	1										2		
CO3					2							1	2		3
CO4		2		1											3
C05													2	2	
CO6	1		1						'				2	2	
AVERAGE	1.5	2.5	1	1	2			2			2		2	2	3
		OVE	RALI	L MAI	PPIN	G OF	SUB.	JECT				1.9			

.

CO - PO ATTAINMENT

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	81.4	1.2							1.62			1.62		1.62		
CO2	79.8		2.37	0.79										1.58		
CO3	81.2					1.62								1.62		2.43
CO4	84.8		1.67		0.83					•						2.51
CO5	79.1													1.53	1.53	
CO6	83.2	0.81		0.81									15	1.62	1.62	
AVEI	RAGE	1.21	2.02	0.8	0.83	1.62			1.62			1.62		1.59	1.57	2.47
				FINA	L ATTA	AINMEN	T LEVI	EL					1.53			

FACULTY

(1) DE

PRINCIPAL S.C. TUMKUR. when

	2023-24	Sem:VII				FAC	ULTY	: AJAY	HIRE	MATH	I						V.					Real V			Billion I					in the second	
			1	8CS74	44	1	٢1	r	2	1	[3		AS	SIGNI	MENT	10				ALCONO DE LA CO	ERNA						Fi	nal			TOTA
Roll No.	USN	Name	T1	T2	T3	CO1- 15	CO2- 15	CO3- 15	CO4- 15	CO5- 15	CO6- 15	CO1- 2	CO2- 1	CO3- 2	CO4- 1	CO5- 2	CO6- 2	SEE (60)	CO1- 10	CO2- 10	CO3- 10	CO4- 10	CO5- 10	CO6- 10	CO1-27	CO2-26	CO3-27	CO4-26	CO5-27	CO6-27	
1	1SV20IS001	BHAVANA S	29	30	30	14	15	15	15	15	15	2	1	2	2	1	2	35	6	8	8	8	8	8	22	24	25	25	24	25	24
2	1SV20IS002	DARSHAN NAYAK B M	30	29	29	13	13	15	15	15	15	2	1	2	2	1	2	41	7	6	6	6	6	6	22	20	23	23	22	23	22
3	1SV20IS003	DEEPA R ARADHYA MATA	29	30	30	15	15	15	15	15	15	2	1	2	2	1	2	45	8	8	8	8	8	8	25	24	25	25	24	25	25
4	1SV20IS004	DHAVALASHREE B JAIN	30	29	30	14	14	14	14	15	15	2	1	2	2	1	2	40	7	5	5	5	5	5	23	20	21	21	21	22	22
5	1SV20IS005	HEMANTH SANGAM M	8	21	15	15	14	15	15	13	13	2	1	2	2	1	2	22	4	7	7	7	7	7	21	22	24	24	21	22	22
6	1SV20IS006	KEERTHANA N	29	30	30	14	15	15	15	15	15	2	1	2	2	1	2	41	7	6	6	6	6	6	23	22	23	23	22	23	23
7	1SV20IS008	NETHRAVATHI K E	30	25	30	14	15	12	12	14	15	2	1	2	2	1	2	0	0	2	2	2	2	2	16	18	16	16	17	19	17
8	1SV20IS009	NITHIN D G	25	20	14	14	14	14	15	14	15	2	1	2	2	1	2	21	4	7	7	7	7	7	20	22	23	24	22	24	22
9	1SV20IS010	REKHA	30	29	30	15	14	15	14	15	15	2	1	2	2	1	2	44	7	6	6	6	6	6	24	21	23	22	22	23	22
10	1SV20IS011	REVATHI P O	28	30	30	15	15	14	15	15	15	2	1	2	2	1	2	39	7	6	6	6	6	6	24	22	22	23	22	23	23
11	1SV20IS012	SHESHADRI T	30	29	29	12	12	13	13	14	15	2	1	2	2	1	2	25	4	4	4	4	4	4	18	17	19	19	19	21	19
12	1SV20IS013	SUDEEP R V S	26	26	29	13	13	14	14	14	15	2	1	2	2	1	2	40	7	5	5	5	5	5	22	19	21	21	20	22	21
13	1SV20IS014	THOUHID J K	26	27	21	14	15	14	15	14	15	2	1	2	2	1	2	36	6	5	5	5	5	5	22	21	21	22	20	22	21

5.24 5.51 5.55 5.32 5.66 81.4% 79.8% 81.2% 84.8% 79.1% 83.2%

PRINCIPAL SILL TUMKUR.

Sri Shridevi Charitable Trust (R.) SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

Sira Road, Tumkur - 572 106, Karnataka, India.

Phone: 0816 - 2212629 | Principal: 0816 - 2212627, 9686114899 | Telefax: 0816 - 2212628

VI Email: info@shrideviengineering.org, principal@shrideviengineering.org | Website: www.shrideviengineering.org (Approved by AICTE, New Delhi, Recognised by Govt. of Karnataka and Affiliated to Visvesvaraya Technological University, Belagavi)

DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING

2023-24

ESTD:2002

COURSE OUTCOMES

COURSE: INTERNET OF THINGS 18CS81

- CO1. Interpret the impact and challenges posed by IoT networks leading to new architectural models.
- CO2. Compare and contrast the deployment of smart objects and the technologies to connect them to Network.
- CO3. Appraise the role of IoT protocols for efficient network communication.
- CO4. Elaborate the need for Data Analytics and Security in IoT.
- CO5. Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in Industry.

PROGRAM OUTCOMES

- PO1. Engineering knowledge: An ability to apply knowledge of mathematics (including probability, Statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems Reaching substantiated conclusions using first principles of mathematics, natural sciences, and Engineering sciences.
- PO3. Design / development of solutions: An ability to design solution for engineering problems and design System components or process to meet desired specifications and needs.
- PO4. Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, Design synthesis of the information to solve complex engineering problems and provide valid Conclusions.
- PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools, including prediction and modelling to complex engineering activities.
- PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, Health, safety, legal, and cultural issues.
- PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in Societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable Development.
- PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of The engineering practice.
- PO.9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse Teams, and in multidisciplinary settings.
- PO10. Communication: Communicate effectively on complex engineering activities with the engineering Community and with the society.
- PO11. Project management and finance: An ability to use the modern engineering tools, techniques, skills And management principles to do work as a member and leader in a team, to manage projects in Multidisciplinary environments.
- PO12. Life-long learning: recognition of the need for, and an ability to engage in, to resolve Contemporary issues and acquire lifelong learning.

COLLE	EGE	SHRII	DEVI I	NSTIT	UTE O	F ENG	INEE	RING	& TEC	CHNOI	LOGY				
FACU	LTY	NAME	Mr.	CHETI	HAN M	S									
B	RANC	H	1.000	ISE			ACA	DEMI	C YEA	R			2023-24	I	
COUR	RSE	B.E	SI	EMEST	TER	VI	II	S	SECTIO	ON					
SUBJI	ECT		INTE	RNET	OF TH	INGS		S	SUBJE	ст со	DE		18CS	81	
		CE./ID	1.97.94	18. 45 ⁹		СО	& PO I	MAPP	ING						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	3	2	-	-	-		-	-	-	2	2	1	3
CO2	2	2	2	2	2	-	2		-	-	-	2	2	2	3
CO3	2	2	2		-	-		-	-	-		2	2	2	3
CO4	3	3	3	-	-	2	-	-	-	-	-	2	2	2	3
C04	2	1	2		-	2	2		-	-		2	2	1	3
AVG	2.4	2.0	2.4	0.8	0.4	0.8	0.8	-	-		-	2.0	2.0	1.6	3.0
AvG	2.4	2.0	OVE		MAPP		F SUB	JECT				1.65			

CO AND PO ATTAINMENT

Vhe Dos

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	65	1.95	1.3	1.95	1.3	-	-	•	-	-	-		1.3	1.3	0.65	1.95
CO2	62	1.24	1.24	1.24	1.24	1.24		1.24	-	-	-	-	1.24	1.24	1.24	1.86
CO3	62	1.24	1.24	1.24	-			-	-	-			1.24	1.24	1.24	1.86
CO4	59	1.77	1.77	1.77	-	-	1.18	-	-	-	-	-	1.18	1.18	1.18	1.77
CO5	59	1.18	0.59	1.18		-	1.18	1.18					1.18	1.18	0.59	1.77
	RAGE	1.47	1.22	1.47	1.27	1.24	1.18	1.21		-	-	-	1.22	1.23	0.98	1.84
						-	F	INAL	ATT	AINM	IENT L	EVEL	1.30			

1)

											٧I	II SĒ	M (ISE)												-		
	Inter	net of things	180	S81		2023-	-2024]	NAM	EOF	THE	E STA	FF : C	hethan	MS								
			IA	MAR	KS	T1	Г	2	Т	3		PR	ACTI	CAL 2	:0				S	EE				197 191	FINAL			то
Roll No	USN	Name	T1 (20)	T2 (20)	T3 (20)	CO1- 20	CO2- 10	CO3- 10	CO4- 10	CO5- 10	CO1- 4	CO2- 4	CO3- 4	CO4- 4	CO5- 4	Lab	SEE (60)	CO1- 12	CO2- 12	CO3- 12	CO4- 12	CO5- 12	CO1- 36	CO2- 26	CO3- 26	CO4- 26	CO5- 26	AV
1	1SV20IS001	BHAVANA S	17	18	16	17	10	8	8	8	4	4	4	4	4	20	34	6.80	6.80	6.80	6.80	6.80	28	21	19	19	19	2
2	1SV20IS002	DARSHAN NAYAK B M	15	15	0	15	7	8	0	0	2	2	2	2	2	10	36	7.20	7.20	7.20	7.20	7.20	24	16	17	9	9	1:
3	1SV20IS003	DEEPA R ARADHYA	14	12	14	14	6	6	7	7	4	4	4	4	4	20	47	9.40	9.40	9.40	9.40	9.40	27	19	19	20	20	21
4	1SV20IS004	DHAVALASHREE B JAIN	20	20	13	20	10	10	6	7	4	4	4	4	4	20	51	10.20	10.20	10.20	10.20	10.20	34	24	24	20	21	25
5	1SV20IS005	HEMANTH SANGAM M	9	4	0	• 9	2	2	0	0	4	3	3	3	3	16	21	4.20	4.20	4.20	4.20	4.20	17	9	9	• 7	7	10
6	1SV20IS006	KEERTHANA N	14	10	14	14	5	5	7	7	4	4	4	4	4	20	41	8.20	8.20	8.20	8.20	8.20	26	17	17	19	19	20
7	1SV20IS008	NETHRAVATHI K E	0	5	12	0	2	3	6	6	4	4	4	4	4	20	36	7.20	7.20	7.20	7.20	7.20	11	13	14	17	17	15
8	1SV20IS009	NITHIN D G	14	5	8	14	3	2	4	4	4	4	4	4	4	20	22	4.40	4.40	4.40	4.40	4.40	22	11	10	12	12	14
9	1SV20IS010	REKHA	18	14	16	18	7	7	8	8	4	4	4	4	4	20	47	9.40	9.40	9.40	9.40	9.40	31	20	20	21	21	23
10	1SV20IS011	REVATHI P O	15	12	16	15	6	6	8	8	4	4	4	4	4	20	37	7.40	7.40	7.40	7.40	7.40	26	17	17	19	19	20
11	1SV20IS012	SHESHADRI T	15	15	0	15	7	8	0	0	2	2	2	2	2	10	32	6.40	6.40	6.40	6.40	6.40	23	15	16	8	8	14
12	1SV20IS013	SUDEEP R V S	7	5	14	7	3	2	7	7	4	4	4	4	4	20	35	7.00	7.00	7.00	7.00	7.00	18	14	13	18	18	16
13	1SV20IS014	THOUHID J K	9	6	0	9	3	3	0	0	3	3	3	3	3	15	21	4.20	4.20	4.20	4.20	4.20	16	10	10	7	7	10
				1.5.004				New State			1										State Play		23.54	16.08	16.00	15.31	15.38	
																							1 1	1001	1001	=001	=00/	

65% 62% 62% 59% 59%

Charling

11

PRINCIPAL SIET. TUMKUR.

Department of Information Science and Engineering

COURSE OUTCOME

CO1. Identify key challenges in managing information and analyze different storage networking technologies and virtualization

CO2.Explain components and the implementation of NAS

CO3.Describe CAS architecture and types of archives and forms of virtualization

CO4.Illustrate the storage infrastructure and management activities

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage:Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities. **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need forsustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

P012 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE	SHR	IDE	VI INS'	TITU	TE O	F ENG	GINE	ERING	G & T	ECHN	OLO	GY						
FACULTY	Mr. S	Mr. SUTHAN R																
BRANCH				ISE	0.0	ACADEMIC YEAR					R 2023-24							
COURSE	B.	E	SEM	ESTE	R	VIII	SI	ECTIO	DN									
SUBJECT	ST	ORA	AGE AI	REA N	NETV	VORK	s		BJECT ODE	Г	18CS822							
					(0 & 1	PO M	APPI	NG									
	PO1	PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	3											3					
CO2			3										3					
CO3	1	2																
CO4		2																
AVERAGE	2	2.33	3 3										3					
		OV	ERALI	_ MAI	PPIN	GOFS	SUBJ	ЕСТ				2.58						

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	62	1.86	1.86											1.86		
CO2	65			1.95										1.95		
CO3	67	0.67	1.34													
CO4	68		1.36													
AVERA	AGE	1.26	1.52	1.95										1.90		
							FI	NAL .	ATTA	INMI	ENTL	EVEL	1.65			

About

Roll								VI	II SE	M (1	SE)	X		19 19 ·		1			See.				1. 1. 1. 1. 1.
Storage Area Networks		1	8CS8	22	20	023-202	24	NAME OF THE STAFF : SUTHAN R															
Roll	ISN		IA MARKS					T3 ASSIGNMENT 10/4					SEE					FINAL			тот		
No.		Name	T1 (30)	T2 (30)	T3 (30)	CO1- 30	CO2- 30	CO3- 15	CO4-	C01-		CO3-			C01-	CO2-	CO3-	CO4-	C01-	CO2-	CO3-	C04-	AVG
1	1SV20IS001	BHAVANA S	29	25	30	29	25	15	15 15	2	3	2	3	(60) 26	<u>15</u> 6.50	15 6.50	<u>15</u> 6.50	<u>15</u> 6.50	47	48 35	<u>32</u> 24	33	
2	1SV20IS002	DARSHAN NAYAK B M	0	28	23	0	28	12	11	2	3	2	3	20	6.00	6.00	6.00	6.00	8	37	24	25	30
3	1SV20IS003	DEEPA R ARADHYA MATA	29	29	29	29	29	14	15	2	3	2	3	35	8.75	8.75	8.75	8.75	40	41	25	20	21
4	1SV20IS004	DHAVALASHREE B JAIN	29	29	29	29	29	15	14	2	3	2	3	33	8.25	8.25	8.25	8.25	39	40	25	25	33
5	1SV20IS005	HEMANTH SANGAM M	29	0	0	29	0	0	0	2	3	2	3	28	7.00	7.00	7.00	7.00	38	10	9	10	17
6	1SV20IS006	KEERTHANA N	28	18	29	28	18	14	15	2	3	2	3	38	9.50	9.50	9.50	9.50	40	31	26	28	31
7	1SV20IS008	NETHRAVATHI K E	0	18	29	0	18	15	14	2	3	2	3	29	7.25	7.25	7.25	7.25	9	28	20	20	22
8	1SV20IS009	NITHIN D G	0	19	25	0	19	12	13	2	3	2	3	23	5.75	5.75	5.75	5.75	8	28	24	24	19
9	1SV20IS010	REKHA	29	23	27	29	23	14	13	2	3	2	3	32	8.00	8.00	8.00	8.00	39	34	20	24	30
10	1SV20IS011	REVATHI P O	29	29	29	29	29	14	15	2	3	2	3	37	9.25	9.25	9.25	9.25	40	41	25	24	34
11	1SV20IS012	SHESHADRI T	0	28	27	0	28	14	13	2	3	2	3	34	8.50	8.50	8.50	8.50	11	40	25	25	25
12	1SV20IS013	SUDEEP R V S	22	18	27	22	18	13	14	2	3	2	3	38	9.50	9.50	and the second second	9.50	34	31	25	23	29
13	1SV20IS014	THOUHID J K	29	0	0	29	0	0	0	2	3	2	3	21	5.25	5.25	5.25	5.25	36	8	7	8	15
	5					1997 * 1997 F			12.575		100.00					0.20	0.20	0.20	29	31	21	22	15
	(10 0																	62%	65%	67%	68%	

Prof. Suthan R

11

Staff Signature

Dr. Rekha H HOD, ISE

1

atta V Sa PRINCIPAL SIET. TUMKUR.

. . .