

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUBJECT ELECTRIC CIRCUIT ANALYSIS SUBJECT CODE BEE302

COURSE OUTCOME

CO1: Understand the basic concepts, basic laws and methods of analysis of DC and AC networks and reduce the complexity of network using source shifting, source transformation and network reduction using transformations

CO2: Solve complex electric circuits using network theorems

CO3: Discuss resonance in series and parallel circuits and also the importance of initial conditions and their evaluation

CO4: Synthesize typical waveforms using Laplace transformation

CO5: Solve unbalanced three phase systems and also evaluate the performance of two port networks.

PROGRAM OUTCOMES

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI	INSTI	TUT	E OF E	IGIN	EERIN	G & T	ECHNO	DLOGY	3										
FACULTY	NAM	E I	Mr. G.	H. RA	VIKU	JMAR																
BRAN	СН		F	EEE		A	CAD	EMIC Y	EAR		2023	-24										
COURSE	В.	E	SEM	ESTE	2	Ш	5	SECTIO	N	,	EEE											
SUBJECT	E	LECT	RIC CI	RCUI	ΓΑΝ	ALYSIS		SUBJE	CT CC	ODE	BEE	302										
CO & PO MAPPING																						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12										
CO1	2	3	2	2	-	-	_	_	-	-	_	2										
CO2	2	3	2	2	-	-			-	-		2										
CO3	1.	3	1	1	-	-	-	-	-	-	_	1										
CO4	3 8	3	3	3	-	-			-	-	-	3										
CO5	2	3	2	2	-	-	-	-	-	-	_	2										
AVERAGE	2	3	2	2	-		-			-		2										
	+					OVE	RAL	L MAP	PING	OVERALL MAPPING OF SUBJECT												

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	56.00	1.120	1.680	1.120	1.120	-	-	-	-	-	-	-	1.120
CO2	49.21	0.984	1.476	0.984	0.984	-		.	-		-	-	0.984
CO3	54.35	0.543	1.630	0.543	0.543	-		-	-	-	-	-	0.543
CO4	53.09	1.592	1.592	1.592	1.592	-	1	-	-	-	-	-	1.592
CO5	65.33	1.306	1.659	1.306	1.306	-	-	-	-	-	-	-	1.306
AV		1.109	1.607	1.109	1.109	- -	1		-	-	-	-	1.109
		1						FIN	AL AT	TAINN	MENT I	EVEL	1.208

	14			lanze	***	T-1-1-	4 41	. 1	15	Subjec		FLEC	TRIC	TRCU	IT ANAI	YSIS					Subje	ct Code	BEE	2302					
Academic year	2023			SEM	III	Total s		_		-			UIZ(2	-TELESCOPE TO THE			MARKS	(50)			Total C	Os ATTA	INMENT			% of I	ndividua		
SEM:III	IA T	EST 1			EST 2			EST 3(CO3	CO4		CO1=10		CO3	CO4	CO5	CO1=27.5	CO2=27.5	CO3=27.5	CO4=27.5	CO5=35	CO1	CO2	CO3	CO4	CO5
USN	CO1	CO2	TOTAL	CO3	CO4	TOTAL	CO5	CO5	TOTAL	CO1	CO2				3.6	3.6	3.6	3.6	3.6	12.8	11.8	13.8	10.8	18.8	46.55	42.91	50.18	39.27	53.71
1SV22EE001	7.	6	13	8	5	13	6	7	13	2.2	2.2	2.2	2.2	2.2			3.6	3.6	3.6	14.6	10.6	12.6	12.6	18.6	53.09	38.55	45.82	45.82	53.14
1SV22EE002	8	4	12	6	6	12	6	6	12	3	3	3	3	3	3.6	3.6			4.6	22	19	21	20	32	80.00	69.09	76.36	72.73	91.43
1SV22EE003	13	10	23	12	11	23	11	12	23	4.4	4.4	4.4	4.4	4.4	4.6	4.6	4.6	4.6			17.6	17.6	19.6	29.6	71.27	64.00	64.00	71.27	84.57
1SV22EE004	12	10	22	10	12	22	11	11	22	4	4	4	4	4	3.6	3.6	3.6	3.6	3.6	19.6		21.4	22.4	36.4	70.55	52.36	77.82	81.45	104.00
1SV22EE005	12	7	19	14	15	19	15	14	19	3.8	3.8	3.8	3.8	3.8	3.6	3.6	3.6	3.6	3.6	19.4	14.4		23	34	76.36	87.27	80.00	83.64	97.14
1SV22EE006	10	13	23	11	12	23	13	10	23	3.6	3.6	3.6	3.6	3.6	7.4	7.4	7.4	7.4	7.4	21	24	22			46.55	46.55	42.91	50.18	53.71
1SV23EE400	6	6	12	5	7	12	6	6	12	2.6	2.6	2.6	2.6	2.6	4.2	4.2	4.2	4.2	4.2	12.8	12.8	11.8	13.8	18.8			47.27	48.00	54.29
	7	7	14	-8	- Elem	14	- 8	6	14-	3.2	3.2	3.2	3.2	3.2	1.8	-1.8	1.8	1.8	1.8	□= 12 ·	12	13	11	≥ 19 ←	43.64	43.64			47.43
1SV23EE401		,	14	7	E	12	8	4	12	2.6	2.6	2.6	2.6	2.6	2	2	2	2	2	10.6	10.6	11.6	9.6	16.6	38.55	38.55	42.18	34.91	-
1SV23EE402	6	6	12	/	3		-	8	14	3.4	3.4	3.4	3.4	3.4	1.6	1.6	1.6	1.6	1.6	13	11	11	13	19	47.27	40.00	40.00	47.27	54.29
1SV23EE403	8	6	14	6	8	14	6	0		3.2	3.2	3.2	3.2	3.2	3.6	3.6	3.6	3.6	3.6	15.8	8.8	12.8	11.8	17.8	57.45	32.00	46.55	42.91	50.86
1SV23EE404	9	2	11	6	5	11	5	ь	11			2.2	2.2	2.2	4.8	4.8	4.8	4.8	4.8	18	10	14	14	21	65.45	36.36	50.91	50.91	60.00
1SV23EE405	11	3	14	7	7	14	6	8	14	2.2	2.2		1			3.8	3.8	3.8	3.8	16.6	12.6	15.6	13.6	22.6	60.36	45.82	56.73	49.45	64.57
1SV23EE406	10	6	16	9	7	16	10	6	16	2.8	2.8	2.8	2.8	2.8	3.8			2.6	2.6	10.6	16.6	14.6	12.6	20.6	38.55	60.36	53.09	45.82	58.86
1SV23EE407	4	10	14	8	6	14	8	6	14	4	4	4	4	4	2.6	2.6	2.6			12.2	11.2	12.2	11.2	18.2	44.36	40.73	44.36	40.73	52.00
1SV23EE408	7	6	13	7	6	13	8	5	13	2.8	2.8	2.8	2.8	2.8	2.4	2.4	2.4	2.4	2.4	12.2	11.2	12.2	1		56.00	49.21	54.55	53.09	65.33
1200 120 110 110 110 110 110 110 110 110				685.55															1		1				30.00				

G. H. ROMZ STAFF

G. A Ramz H.O.D

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Tech
TUMKUR-572106.

PRINCIPAL

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF EEE

	SUBJECT	ANALOG ELECTRONICS CIRCUITS	SUBJECT CODE	BEE303	
Service Co.	SUBJECT	ANALOG ELECTRONICS CIRCUITS	SCBSECT CODE	DEECOC	

COURSE OUTCOME

- CO1. To provide the knowledge for the analysis of transistor biasing and thermal stability circuits.
- CO2 .To develop skills to design the electronic circuits like amplifiers, power amplifiers and oscillators.
- CO3. To understand the importance of FET and MOSFET
- CO4. To develop skills to design the FET/MOSFET amplifiers\
- CO5. To understand the importance of electronics circuits

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and T tools, including prediction and modeling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHE	RIDEVI	INST	ITUTI	E OF E	NGIN	VEERIN	G & T	ECH	NOLOGY	Y
FACULTY	Y NAM		MS.SU									
BRAN	NCH			EEE		A	CAD	EMIC Y	EAR		2023-	2024
COURSE	B.	E	SEM	ESTE	R	III		SECTIO	N		Aug be	
SUBJECT	AN	IALO	G ELE	CTRO	NIC C	IRCU	T	SUBJE	CT C	ODE	BEE303	
CO & PO M	APPI	NG		A44 (1913)	101 2	10.11 W	5.0	10111				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3,	2	1	2	2						1	1
CO2	2	1	2	2	3						1	1
CO3	3	2	2	2	2						1	1
CO4	2	2	3	2	3			7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1
CO5	2	2	2	2	2			THE			1	.1
AVERAGE	2.4	1.8	2	2	2.4						1	1
						OVE	RALI	L MAPI	PING)E SII		1.8

		TI AIVI TOTA										
CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
48	1.44	0.96	0.48	0.96	0.96						0.48	0.48
34	0.68	0.34	0.68	0.68	1.02	i i i i i i i i i i i i i i i i i i i					0.34	0.34
35	1.05	0.7	0.7	0.7	0.7						0.35	0.35
47	0.94	0.94	1.41	0.94	1.41							0.47
53	1.06	1.06	1.06	1.06	1.06							0.53
43.4	1.034	0.8	0.866	0.868	1.03							
								FINAL	ATTAR	MENT		1.0
	48 34 35 47 53	48 1.44 34 0.68 35 1.05 47 0.94 53 1.06	48 1.44 0.96 34 0.68 0.34 35 1.05 0.7 47 0.94 0.94 53 1.06 1.06	48 1.44 0.96 0.48 34 0.68 0.34 0.68 35 1.05 0.7 0.7 47 0.94 0.94 1.41 53 1.06 1.06 1.06	48 1.44 0.96 0.48 0.96 34 0.68 0.34 0.68 0.68 35 1.05 0.7 0.7 0.7 47 0.94 0.94 1.41 0.94 53 1.06 1.06 1.06 1.06	48 1.44 0.96 0.48 0.96 0.96 34 0.68 0.34 0.68 0.68 1.02 35 1.05 0.7 0.7 0.7 0.7 47 0.94 0.94 1.41 0.94 1.41 53 1.06 1.06 1.06 1.06 1.06	48 1.44 0.96 0.48 0.96 0.96 34 0.68 0.34 0.68 0.68 1.02 35 1.05 0.7 0.7 0.7 0.7 47 0.94 0.94 1.41 0.94 1.41 53 1.06 1.06 1.06 1.06	48 1.44 0.96 0.48 0.96 0.96 0.96 34 0.68 0.34 0.68 0.68 1.02 35 1.05 0.7 0.7 0.7 0.7 47 0.94 0.94 1.41 0.94 1.41 53 1.06 \$\gamma\$ 1.06 1.06 1.06	48 1.44 0.96 0.48 0.96 0.96 0.96 0.96 34 0.68 0.34 0.68 0.68 1.02 0.7	48 1.44 0.96 0.48 0.96 0.7 0.9 0.9 0.9 <td< td=""><td>48 1.44 0.96 0.48 0.96 <</td><td>48 1.44 0.96 0.48 0.96 0.96 0.96 0.48 0.48 34 0.68 0.34 0.68 0.68 1.02 0.34 0.34 35 1.05 0.7 0.7 0.7 0.7 0.7 0.7 0.35 47 0.94 0.94 1.41 0.94 1.41 0.047 0.53 106 1.06 1.06 1.06 1.06 0.53</td></td<>	48 1.44 0.96 0.48 0.96 <	48 1.44 0.96 0.48 0.96 0.96 0.96 0.48 0.48 34 0.68 0.34 0.68 0.68 1.02 0.34 0.34 35 1.05 0.7 0.7 0.7 0.7 0.7 0.7 0.35 47 0.94 0.94 1.41 0.94 1.41 0.047 0.53 106 1.06 1.06 1.06 1.06 0.53

SEM: 3rd, EEE	IA	TEST	`1	L	A TES	T 2		IA T	EST 3									SI	EE -				7	TOTAL						. 100		1
USN	CO1	CO2	ГОТА	CO3	CO4	ГОТАІ	CO1	CO4	co5	TOTAL	CO1	CO2	CO3	CO4	CO5	ГОТА	COL	CO2	CO3	CO4	CO5	TOTAL	1		203(32	Fours	505/00	COL	Averag		1	
SVEE22EE00	0	0	0	0	0	0	4	8	10	22	2	2	2	2	2	10	1.8	1.8	1.8	1.8	1.8	9	7.8	3.8	-				CO2	CO3	CO4	CO5
1SV22EE002	12	6	18	10	18	28	0	10	14	24	2	2	2	2	2	10	1.2	1.2	1.2						3.8	11.8	14	0.15	0.12	0.12	0.23	0.43
1SV22EE003	20	20	40	18	16	34	18	20	20	58	2	2	2	2	2	10				1.2	1.2	6	15.2	9.2	13.2	31.2	17	0.29	0.29	0.41	0.60	0.54
1SV22EE004	20	17	37	17	20	37	0	14	20	34	2	2	2	2			5	5	5	5	5	25	45	27	25	43	27	0.87	0.84	0.78	0.83	0.84
1SV22EE005	16	6	32	12	20	32	9	10	20	39	2	2	2	2	2	10	4.6	4.6	4.6	4.6	4.6	23	26.6	23.6		40.6	27	0.51	0.74	0.74	0.78	0.83
1SV22EE006	12	6	18	8	10	18	6	20	0	26		2	2	2	2	10	3.6	3.6	3.6	3.6	3.6	18	30.6	11.6		35.6	26	0.59	0.36	0.55	0.68	0.80
1SV23EE400	8	0	8	0	10	10	17	20			2	2	2	2	2	10	1.8	1.8	1.8	1.8	1.8	9	21.8	9.8	11.8	33.8	4	0.42	0.31	0.37	0.65	0.12
1SV23EE401	4	14	18	8			1/	0	20	43		2	2	2	2	10	3.6	3.6	3.6	3.6	3.6	18	30.6	5.6	5.6	21.6	26	0.59	0.18	0.18	0.42	0.80
1SV23EE401	10		-	7	10	18	18	8	10	36	2	2	2-	2	2	10	3.6	3.6	3.6	3.6	3.6	18	27.6	19.6	13.6	23.6	16	0.53	0.61	0.43	0.45	0.49
	10	11	21	/	3	10	13	3	14	30	2	2	2	2	2	10	2.2	2.2	2.2	2.2	2.2	11	27.2	15.2	11.2	10.2	18	0.52	0.48	0.35	0.20	0.57
1SV23EE403	8	0	8	0	5	5	5	7	14	26	2	2	2	2	2	10	1.6	1.6	1.6	1.6	1.6	8	16.6	3.6	3.6	15.6	18	0.32	0.11	0.11	0.30	0.55
1SV23EE404	8	0	8	0	0	0	2	6	14	22	2	2	2	2	2	10	2.4	2.4	2.4	2.4	2.4	12	14.4	4.4	4.4	10.4	18	0.28	0.14	0.14	0.20	0.58
1SV23EE405	0	0	0	0	0	0	0	0	0	0	2	2	2	2	2	10	2.6	2.6	2.6	2.6	2.6	13	4.6	4.6	4.6	4.6	5	0.09	0.14	0.14	0.09	0.14
1SV23EE406	16	4	20	6	12	18	20	20	12	52	2	2	2	2	2	_10	2.2	2.2	2.2	2.2	2.2	11	40.2	8.2	10.2	36.2	16	0.77	0.26	0.32	0.70	0.51
1SV23EE407	16	3	19	10	14	24	20	18	18	56	2	2	2	2	2_	10	1.8	1.8	1.8	1.8	1.8	9	39.8	6.8	13.8	35.8	22	0.77	0.21	0.43	0.69	
1SV23EE408	8	4	12	2	6	8	18	2	0	20	2	2	2	2	2	10	1.8	1.8	1.8	1.8	1.8	9	29.8	7.8	5.8	11.8	1	0.77	0.24			0.68
Total	158	91	259	98	144	242	150	152	186	488	30	30	30	30	30	150	39.8	39.8	39.8	39.8	39.8	199	377.8	-		366	255.0			0.18	0.23	0.12
students	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15		-			255.8	7.27	5.03	5.24	7.03	7.99
Average	10.53	6.07	17.3	6.53	9.6	16.13	10	10.133	12.4	32.53	2	2	2	2	2	10	2.7	2.7					15	15	15	15	15	15	15	15	15	15
		27.18.39						20.200		32.33	-	- 1	- 1			10	2.1	2.7	2.7	2.7	2.7	13.27	25.19	10.72	11.19	24.4	17.05	0.48	0.34	0.35	0.47	0.53

AEC 23-24

G. H. R. Overall Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL SIET. TUMBER

DEPARTMENT OF EEE

SUBJECT	TRANSFORMER & GENERATOR	SUBJECT CODE	BEE304
---------	-------------------------	--------------	--------

COURSE OUTCOME

- CO1. To understand the construction, working and various tests of singlephase Transformer.
- CO2. To understand the construction, working and parallel operation of threephase Transformer.
- CO3. To understand the construction, working analysis of SynchronousGenerator.
- CO4. To understand the parallel operation of generator
- CO5. To understand the construction, working of solar and wind power generators

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF E	NGIN	EERIN	G & T	ECHNO	DLOGY			
FACULTY	NAM	E I	MRS. S	SHWE	гна т	M				1				
BRAN	СН	333	F	EEE		A	CAD	EMIC Y	EAR		2023	-24		
COURSE	B.1	E	SEM	ESTE	R	Ш		SECTIO	N					
SUBJECT		Tr	ansforn	ner &G	enerate	or		SUBJE	CT CC	ODE	BEE	304		
CO & PO MAPPING														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	2	3					1		1		
CO2	2	1	2	2	2					1		1		
CO3	3	2	2	2	2					1		1		
CO4	2	2	3	2	3					1		1		
CO5	2	2	2	2	2					1		1		
AVERAGE	2.4	1.8	2	2	2.4					1		1		
						OVE	RAL	L MAPI	PING	OF SUE	JECT	1.8		

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1:
CO1	89.1	2.673	2.673	0.891	1.782	2.673					0.891		0.89
CO2	78.7	1.574	1.574	1.574	1.574	1.574					0.787		0.78
CO3	75.6	2.268	2.268	1.512	1.512	1.512					0.756		0.75
CO4	53.1	1.062	1.062	1.593	1.062	1.593					0.531		0.53
CO5	42.56	0.8512	0.8512	0.8512	0.8512	0.8512					0.4256		0.425
VERAGE	67.812	1.62749	1.62749	1.35624	1.35624	1.62749					0.67812		0.678
									FINAL	ATTAI	INMENT I	LEVEL	1.28

SEM: 3rd EEE	IA	TEST	1	1	A TES	To		TA T	Ecm 2				ASSE																			
USN	COI	1	ГОТАІ	-	1	1	-	T	EST 3									SE	E					TOTA	L			1 1/8	Averag	re ·		1
1SVEE22EE001		8	13	7	0	TOTAL		CO4	co5	TOTAL	CO1	CO2	CO3	CO4	CO5	ГОТАІ	CO1	CO2	CO3	CO4	CO5	ГОТА	CO1(34	02(24	CO3(24	CO4(3	CO5(24		CO2	C03	C04	C05
1SV22EE002	12	10	22	14	-	24	15	9	11	35	4	4	4	4	4	20	0.2	0.2	0.2	0.2	0.2	1	24.2	12.2	11.2	13	15	0.71	0.51	0.47	0.38	
1SV22EE003	20	15	35	20	10	24	10	2		9	4	4	-4	4	4	20	3.6	3.6	3.6	3.6	3.6	18	26.6	17.6	21.6	16	8	0.78	0.73	0.90	0.47	0.83
1SV22EE004	18	19	37		0	20	18	16	16	50	4	4	4	4	4	20	4.4	4.4	4.4	4.4	4.4	22	46.4	23.4	28.4	20	24	1.36	0.98	1.18	0.59	1.02
1SV22EE005	16	15	31	18	19	37	13	7	5	25	4	4	4	4	4	20	3.6	3.6	3.6	3.6	3.6	18	38.6	26.6	25.6	30	13	1.14	1.11	1.07	0.33	
1SV22EE006	13	18	31	11	12	23	12	6	0	18	4	4	4	4	4	20	3.6	3.6	3.6	3.6	3.6	18	35.6	22.6	18.6	22	8	1.05	0.94	0.78	0.65	0.53
1SV23EE400	12	12		10	13	23	12	9	0	21	4	4	4	4	4	20	1.4	1.4	1.4	1.4	1.4	7	30.4	23.4	15.4	26	, 5	0.89	0.98	0.64	0.65	0.32
1SV23EE400	11	12	24	15	0	15	16	3	3	22	4	4	4	4	4	20	4.4	4.4	4.4	4.4	4.4	22	36.4	20.4	23.4	7	11	1.07	0.85	0.98	0.76	
1SV23EE401	16		23	11	10	21	15	9	0	24	4	4	4	4	4	20	2.2	2.2	2.2	2.2	2.2	11	32.2	18.2	17.2	23	6	0.95	0.76	0.72	0.21	0.48
1SV23EE402	- 10	17	33	12	9	21	7	10	2	19	4	4	4	4	4	20	3.6	3.6	3.6	3.6	3.6	18	30.6	24.6	19.6	23	10	0.90	1.03	0.72		0.26
1SV23EE404	12	9	15	10	0	10	9	9	7	25	4	4	4	4	4	20	2.2	2.2	2.2	2.2	2.2	11	21.2	15.2	16.2	13	13	0.62	0.63	0.68	0.68	0.40
1SV23EE404	12	9	21	2	0	2	8	5	11	24	4	4	4	4	4	20	0.4	0.4	0.4	0.4	0.4	2	24.4	13.4	6.4	9	15	0.72	0.56		0.38	0.55
	12	12	24	14	0	14	0	0	0	0	4	4	4	4	4	20	2.6	2.6	2.6	2.6	2.6	13	18.6	18.6	20.6	1	7	0.72		0.27	0.26	0.64
1SV23EE406	13	10	23	9	12	21	11	7	0	18	4	4	4	4	4	20	1.8	1.8	1.8	1.8	1.8	9	29.8	15.8	14.8	23	6	0.33	0.78		0.12	0.28
1SV23EE407	10	13	23	18	15	33	16	7	0	23	4	4	4	4	4	20	1.4	1.4	1.4	1.4	1.4	7	31.4	18.4	23.4	26			0.66	0.62	0.68	0.24
1SV23EE408	6	6	12	3	8	11	15	4	0	19	4	4	4	4	4	20	2.8	2.8	2.8	2.8	2.8	14	27.8	12.8	9.8		5	0.92	0.77	0.98	0.76	0.23
TOTAL	182	185	367	174	108	282	174	103	55	332	60	60	60	60	60	300	38.2	38.2	OF THE PERSON NAMED IN	38.2	38.2	191	454.2		272.2	16	150	0.82	0.53		0.47	0.28
students	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	60		2 10 10 10 10 10	271				11.34	_	6.38
Average	12.133	12.33	24.47	11.6	7.2	18.8	11.6	6.867	3.667	22.133	4	4	4	4	4	20	2.55	2.55	2.55	2.55	2.55			45	45	45	45	1.76	1.88	1.88	1.32	1.88
							N. C.	NI ALIVANIA				Clark Religi					2.33	2.33	2.33	2.35	2.35	12.73	30.28	18.88	18.15	18.07	10	0.89	0.79	0.76	0.53	0.43

T&G 23-24

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF EEE

CUDIECT	ELECTRICAL MEASUREMENTS AND		
SUBJECT	INSTRUMENTATION	SUBJECT CODE	BEE306B

COURSE OUTCOME

- CO1. To understand the significance and methods of Measurements, elements of generalised measurement system and errors in measurements.
- CO2. To measure resistance, inductance, capacitance by use of different bridges.
- CO3. To study the construction, working and characteristics of various instrument transformers.
- CO4. To have the working knowledge of electronic instruments and display devices.
- C05. TO study the construction of bridges

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE	1 2	SHR	IDEVI	INSTI	TUTE	OF E	NGIN	EERIN	G & T	ECHN	OLOGY	7
FACULTY	NAM	IE :	MRS.U	MABA	M -							
BRAN	ICH		I	EEE		A	CAD	EMIC Y	EAR		2023	-24
COURSE	B.	E	SEM	ESTE	R	Ш		SECTIO	N			
SUBJECT	Elect	rical M	leasurei	nents &	Instru	mentat	ions	SUBJE	CT C	ODE	BEEE	306B
CO & PO M	APPI	NG			1 2 2							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	2					1		1
CO2	2	1	2	2	3					1		1
CO3	3	2	2	2	2					1		1
CO4	2	2	3	2	3			11-11-11-11-11-11-11-11-11-11-11-11-11-		1		1
CO5	2	2	2	2	2					1		1
AVERAGE	2.4	1.8	2	2	2.4					1		1
						OVE	RAL	L MAPI	ING (OF SUB	JECT	1.8

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1	65.4	1.962	1.308	0.654	1.308	1.962					0.654		0.6
CO2	52.1	1.042	0.521	1.042	1.042	1.042					0.521		0.5
CO3	77.9	2.337	1.558	1.558	1.558	2.337					0.779		0.7
CO4	73.2	1.464	1.464	2.196	1.464	1.464					0.732		0.7
CO5	65.1	1.302	1.302	1.302	1.302	1.302					0.651		0.6
VERAGE	66.74	1.60176	1.20132	1.3348	1.3348	1.60176					0.6674		0.66
l de la companya della companya della companya de la companya della companya dell			1						FINAL	ATTAIN	NMENT I	LEVEL	1.2:

CEM. L FEE	14	TEST	1	IA	TEST	2		IA TE	ST 3									SE	EE		1303	Jan La		TOTAL	L				Averag	e	7.0	
SEM: I, EEE USN	CO1		TOTAL			ГОТАІ	CO1	CO4		ГОТАІ	CO1	CO2	CO3	CO4	CO5	TOTAL	CO1	CO2	CO3	CO4	CO5	ГОТАІ	CO1(34	CO2(24)	CO3(24)	CO4(34	CO5(24)	CO1	CO2	CO3	CO4	CO5
1SVEE22EE001	CO1	2	9	0	0	0	5	8	0	13	4	4	4	4	4	20	3.6	3.6	3.6	3.6	3.6	18	17.6	10.6	7.6	15.6	8	0.518	0.442	0.317	0.459	0.317
15V22EE002	7	1	8	15	2	17	12	8	0	20	4	4	4	4	4	20	4.8	4.8	4.8	4.8	4.8	24	27.8	9.8	23.8	18.8	9	0.818	0.408	0.992	0.553	0.367
1SV22EE002	18	20	38	20	14	34	20	20	18	58	4	4	4	4	4	20	7.8	7.8	7.8	7.8	7.8	39	49.8	31.8	31.8	45.8	30	1.465	1.325	1.325	1.347	1.242
1SV22EE003	12	7	19	17	11	28	6	15	12	33	4	4	4	4	4	20	7.6	7.6	7.6	7.6	7.6	38	29.6	18.6	28.6	37.6	24	0.871	0.775	1.192	1.106	0.983
1SV22EE004	10	6	16	15	8	23	14	10	3	27	4	4	4	4	4	20	3.8	3.8	3.8	3.8	3.8	19	31.8	13.8	22.8	25.8	11	0.935	0.575	0.950	0.759	0.450
1SV22EE006	10	12	32	16	1	20	14	16	17	47	4	4	4	4	4	20	6.6	6.6	6.6	6.6	6.6	33	34.6	22.6	26.6	30.6	28	1.018	0.942	1.108	0.900	1.150
1SV23EE400	0	0	0	12	4	16	8	4	10	22	4	4	4	4	4	20	5.8	5.8	5.8	5.8	5.8	29	17.8	9.8	21.8	17.8	20	0.524	0.408	0.908	0.524	0.825
1SV23EE400	6	2	8	11	0	11	9	5	0	14	4	4	4	4	4	20	3.6	3.6	3.6	3.6	3.6	18	22.6	9.6	18.6	12.6	8	0.665	0.400	0.775	0.371	0.317
	0	9	18	0	0	0	12	7	0	19	4	4	4	4	4	20	2.4	2.4	2.4	2.4	2.4	12	27.4	15.4	6.4	13.4	6	0.806	0.642	0.267	0.394	0.267
1SV23EE402	9		The second	10	- E	15	3	9	8	20	4	4	4	4	4	20	3.6	3.6	3.6	3.6	3.6	18	10.6	7.6	17.6	21.6	16	0.312	0.317	0.733	0.635	0.650
1SV23EE403	0	0	0	0	17	17	0	10	6	16	4	4	4	4	4	20	3.6	3.6	3.6	3.6	3.6	18	7.6	7.6	7.6	34.6	14	0.224	0.317	0.317	1.018	0.567
1SV23EE404	0	0	0		16	16	0	6	9	15	4	4	4	4	4	20	5.2	5.2	5.2	5.2	5.2	26	9.2	9.2	9.2	31.2	18	0.271	0.383	0.383	0.918	0.758
1SV23EE405	0	0	0	0			12	13	10	36	1	1	1	4	4	20	4.2	4.2	4.2	4.2	4.2	21	21.2	8.2	22.2	31.2	18	0.624	0.342	0.925	0.918	0.758
1SV23EE406	0	0	0	14	10	24	13	13	11	28	4	4	4	4	4	20	3.6	3.6	3.6	3.6	3.6	18	11.6	7.6	22.6	25.6	19		0.317	0.942	0.753	0.775
1SV23EE407	0	0	0	15	5	20	4	13	11	14	4	4	1	1	4	20	1.2	1.2	1.2	1.2	1.2	6	14.2	5.2	13.2	11.2	8	0.418	0.217	0.550	0.329	0.342
1SV23EE408	0	0	0	8	4	12	9	115	107		60	60	60	60	60	300	67.4	67.4	67.4	67.4	67.4	337	333.4	187.4	280.4	373.4	234.4	9.806	7.808	11.683		9.7667
TOTAL	77	60	148	153	100	253	129	146	107	382	60		111102			15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
STUDENTS	15	15	15	15	15	15	15	15	15	15	15	15	15	15	4.00	20.00		4.49	4.49	4.49	4.49	22.47	22.23	12.49	18.69	24.89	15.63	0.65	0.52	0.78	0.73	0.65
AVERAGE	5.13	4.00	9.87	10.20	6.67	16.87	8.60	9.73	7.13	25.47	4.00	4.00	4.00	4.00	4.00	20.00	4.49	4.43	4.43	7.43	7.43	122.47	22.23	22.43	10.05	203	25.05	0.05	0.52	5.70	5.75	5.55

EEM 23-24

100g 24 24/6/24 G. 4 Rows

of the Departm

Electrical & Electronics Engineer.

Shridevi Institute of Engineering & Technology

TUMKUR-572106.

PRINCIPAL SIET. TUMKUR

DEPARTMENT OF EEE

SUBJECT CODE	21EE51
	SUBJECT CODE

COURSE OUTCOME

- CO1. To understand the concept of various methods of generation of power
- CO2. To understand the importance of HVAC, UHVAC and HVDC transmission
- CO3. To design insulator for the given voltage level
- CO4. To calculate the transmission line parameter
- CO5. To study the underground cables for power transmission and evaluate different types of distribution system

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

23-24 EE52
1 PO1'
1 PO1
1 1012
1
1
1
1
1
1

CO AND	TUAL	IAIIVIV											
	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	91.3	28739	1.826	0.913	1.826	1.826					0.779	0.779	0.779
CO2	92.3	1.846	0.923	1.846	1.846	1.846					0.79	0.79	0.79
CO3	79.8	2.394	1.596	1.596	1.596	1.596					0.769	0.769	0.769
CO4	89.5		1.79	2.685	1.79	1.79					0.813	0.813	0.813
CO5	93.3	1,866	1.866	1.866	1.866	1.866					0.8	0.8	0.8
AVERAGE	89.24	2.739	1.826	0.913	1.826	1.826					0.779	0.779	0.779
								FIN	AL AT	TAIN	MENT I	LEVEL	1.55

SEM: V, EEE		IA TEST	1		IA TEST	2		IA TEST	3			Assign	ment			PR. TR		SE	E												
USN	CO1	CO2	TOTAL	CO3	CO4	TOTAL	CO4	CO5	TOTAL	CO1	CO2	CO3	CO4	CO5	ГОТАТ							F		TOTAL					Average		
1SV21EE001	18	20	38	20	20	40	20	20	40	2	2	2	CO4	COS	IOIAI	CO1	CO2	CO3	· CO4			CO1(32)	CO2(32)	CO3(32)	CO4(52)	CO5(32)	CO1	CO2	CO3	CO4	CO5
1SV21EE003	20	20	40	20	20	40	20		40	2	2	2	2	2	10	3.8	3.8	3.8	3.8	3.8	19	23.8	25.8	25.8	45.8	25.8	0.744	0.806	0.806	0.881	0.806
1SV21EE006	20	20	40	0	20	40	20	20	40	2	2	2	2	2	10	5	5	5	5	5	25	27	27	27	47	27	0.844	0.844	0.844	0.904	0.844
1SV21EE005	20	20	40	- 0	0	0	20	20	40	2	2	2	2	2	10	3.6	3.6	3.6	3.6	3.6	18	25.6	25.6	5.6	25.6	25.6	0.800	0.800	0.175	0.492	0.800
1SV22EE401	10		The second second	18	12	30	20	20	40	2	2	2	2	2	10	3.6	3.6	3.6	3.6	3.6	18	25.6	25.6	23.6	37.6	25.6	0.800	0.800	0.738	0.723	
	18	18	36	20	20	40	20	20	40	2	2	2	2	2	10	6	6	6	6	6	30	26	26	29	10	28					0.800
1SV22EE403	16	16	32	14	14	28	16	16	32	2	2	2	2	2	10	6	6	6	6	6	30	24	24	20	40		0.813	0.813	0.875	0.923	0.875
15V22EE404	16	16	32	14	14	28	16	16	32	2	2	2	2	2	10	5.2	E 2	5.2	F 2	5.0		24		22	38	24	0.750	0.750	0.688	0.731	0.750
TOTAL	128	130	258	106	100	206	132	132	264	1/	1/	14	14	11	70	3.2	3.2		5.2	5.2	26	23.2	23.2	21.2	37.2	23.2	0.725	0.725	0.663	0.715	0.725
otal students	7	7	7	7	7	7	7	7	7	7	7	7	14	14	70	33.2	33.2	33.2	33.2	33.2	166	175.2	177.2	153.2	279.2	179.2	5.475	5.538	4.788	5.369	5.600
Average	21.33	21.67	43.00	17.67	16.67	34.33	22.00	22.00	****	/	/	/	1	7	7	7	7	7	7	7	7	7	7	7	7	7	7.000	7.000	7.000	7.000	7.000
		22.07	45.00	17.07	10.07	34.33	22.00	22.00	44.00	2.33	2.33	2.33	2.33	2.33	11.7	5.53	5.53	5.53	5.53	5.53	27.67	29.20	29.53	25.53	46.53	29.87	0.913	0.923	0.798	0.895	0.933

T&D 21FF5 -2023-24

STAFF

6. U. Ramz

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

SUBJECT	CONTROL SYSTEMS	SUBJECT CODE	21EE52
and the second			

COURSE OUTCOME:

CO1: Analyze and model electrical and mechanical system using analogous.

CO2: Formulate transfer functions using block diagram and signal flow graphs.

CO3: Analyze the stability of control system, ability to determine transient and steady state time response.

CO4: Illustrate the performance of a given system in time and frequency domains, stability analysis using Root locus and Bode plots.

CO5: Discuss stability analysis using Nyquist plots, Design controller and compensator for a given specification.

PROGRAM OUTCOMES:

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACUL	ΓΥ NA			UJA K.				NEERIN			OLOG	•
BRA	NCH			EEE		I	ACAD	EMIC Y	YEAR		202	3-24
COURSE	В	.E	SEN	MESTE	R	V		SECTIO	ON		EEE	3-24
SUBJECT	•	C	ONTR	OL SY	STEM	IS		SUBJE	CCT C	ODE	21E	E52
CO & PO	MAPPI	NG					Sales					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
21EE51.1	2	3	2	2			1	1		1010		
21EE51.2	2	3	2	2	1		1	1			1	1
21EE51.3	3	3	2	2		1	1				1	1
21EE51.4	2	3	2	2		L		1				1
21EE51.5	3	2					1	1			1	1
lvg Map			3	3		1		1			1	1
	2.4	2.8	2.2	2.2	1	1	1	1				

	CO%	PO1	Doo										
	CO 76	FUI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	DO:
CO1	44.55	0.89	1.34	0.89	0.89			0.45	0.45		2010		PO1
CO2	28.86	0\$58	0.87	0.58	0.58	0.29						0.45	0.45
CO3	30.07	0.90			0.56	0.29		0.29	0.29			0.29	0.29
		0.90	0.90	0.60	0.60		0.30		0.30				0.30
CO4	29.38	0.59	0.83	0.59	0.59			0.29	0.29			0.20	
CO5	31.91	0.96	0.64	0.96	0.96		0.32					0.29	0.29
VERAGE	49.982	0.78	0.92	0.72	0.70				0.32			0.32	0.32
,			0.72	0.72	0.72	0.29	0.31	0.34	0.33			0.34	0.33
								FINA	L ATT	AINMI	ENT LE	VEL	0.51
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		1 - 7		and the			Starten					'VLL	0.91

	202	3-24		SEM	m	Total :	strengt	h	7						Subjec	t			C	ontrol sys	tems			Subje	ct Code	21E	E52							
Academic year	7	COLUMN TO A STATE OF	THE RESERVE		EST 2	CONTRACTOR OF		rest 3	3(20M)	ASS	IGNEM	ENT /	OUIZ	0 M)	La	borate	ry(20	M)			SEE	MARK	S(50)			Total Co	Os ATTAI	NMENT			% of	Individua	al CO	
SEM:V		EST 1						_			CO2	CO3	CO4		CO1=4				CO5	CO1=10	CO2	CO3	CO4	CO5	CO1=26	CO2=26	CO3=26	CO4=26	CO5=36	CO1	CO2	CO3	CO4	COS
USN	CO1	CO2	TOTAL	CO3	CO4			COS	TOTAL	CO1	CO2	2	2	2	2.0	3.8	3.8	3.8	3.8	5	5	5	5	5	23.8	7	11.5	12	22	82.07	24.14	39.66	41.38	50.00
1SV21EE001	13	0	13	4.5	5	10	10	10	20	2	2	2	2	2	3.0	-	3.8	3.8	3.8	6.2	6.2	6.2	6.2	6.2	20.5	16.2	18.2	18.2	22	70.69	55.86	62.76	62.76	50.00
1SV21EE003	8.5	8	9	10	10	20	10	10	20	2	2	2	2	2	3.8	3.8		_		THE RESERVE TO SERVE	4.8	4.8	4.8	4.8	17.1	12.3	9.3	11.8	22	58.97		32.07	40.69	_
1SV21EE005	6.5	5.5	12	2.5	5	8	10	10	20	2	2	2	2	2	3.8	3.8	3.8	3.8	3.8			3.6	3.6	3.6	15.4	12.1	5.6	5.6	22	53.10	41.72	19.31	19.31	50.00
1SV21EE006	6	6.5	13	0	0	0	10	10	20	2	2	2	2	2	3.8	3.8	3.8		3.8	3.6	3.6					12.6	15.6	15.6	22	63.45	43.45	53.79	53.79	50.00
1SV22EE401	9	7	16	10	10	20	10	10	20	2	2	2	2	2	3.8	3.8	3.8	3.8	3.8	3.6	3.6	3.6	3.6	3.6	18.4		THE RESERVE OF THE PARTY OF THE							_
1SV22EE403	7.5	4.5	12	6.5	4	11	4	9	13	1.6	1.6	1.6	1.6	1.6	2.4	2.4	2.4	2.4	2.4	4.8	4.8	4.8	4.8	4.8	16.3	10.9	12.9	10.4	14.6	56.21	37.59	44.48	35.86	_
1SV22EE404	7.5	5	13	6.5	4	11	5	9	14	1.8	1.8	1.8	1.8	1.8	2.6	2.6	2.6	2.6	2.6	5.8	5.8	5.8	5.8	5.8	17.7	12.6	14.1	11.6	15.8	61.03	43.45	48.62	40.00	35.9
15V22EE4U4	7.5	3	13	0.5	-		-	-	-				1											-	100									-
		120	15		Section 1	C 200 to 1		-	E55			Thomas In	-	1											-									
																	1000	MAN A	Mary 1			SPACE S												
	2000														-		17.779			16, 22, 31		DESIGNATION OF THE PARTY OF THE							alu Mai		world at			
				818																					de Contrata			1641 100 133						
																			DESCRIPTION OF THE											44.55	28.86	30.07	29.38	31.9

Tamp K.S

Head of the Department

Electrical & Electronics Engineering

Shridevi Institute of Engineering & Technology

TUMKUR-572106.

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUBJECT POWER SYSTEM AT	LYSIS-I SUBJECT CODE 21EE53
-------------------------	-----------------------------

COURSE OUTCOME

CO1: Model the power system components & construct per unit impedance diagram of power system

CO2: Analyze three phase symmetrical faults on power system

CO3: Compute unbalanced phasors in terms of sequence components and vice versa, also develop sequence networks

CO4: Analyze various unsymmetrical faults on power system

CO5: Examine dynamics of synchronous machine and determine the power system stability.

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- **P06** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF EN	IGIN	EERING	G & T	ECHNO	DLOGY	
FACULTY	NAM	E	Mr. G.	H. RA	VIKU	MAR				•		
BRAN	СН₿		E	EEE		A	CADI	EMIC Y	EAR	Lie.	2023	-24
COURSE	B.I	E	SEM	ESTEI	2	V	5	SECTIO	N		EEE	
SUBJECT	P	OWE	R SYS	TEM A	NALY	YSIS-I		SUBJE	CT CC	ODE	21EF	E53
CO & PO M	APPIN	NG										
THE THE	PO,1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	2	-	-	-	-	-	-	1
CO2	2	3	2	-	2	-	-	-	-	-	-	1
CO3	2	3	-	-	2	-	-	-	-	-	-	1
CO4	2	3	-		2	-	-	-	-	-	-	1
CO5	2	3	-	-	2	-	-	-		-	-	1
AVERAGE	2	3	2	-	2	-	-	-	-	-	-	1
		II.				OVI	ERAL	L MAP	PING	OF SUI	BJECT	2

COP	ND PO	AIIA		1									
	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	68.16	1.363	2.044			1.363							0.681
CO2	66.12	1.322	1.983	1.322		1.322							0.661
CO3	75.31	1.506	2.259			1.506							0.753
CO4	61.50	1.23	1.845			1.23							0.615
CO5	70.20	1.404	2.106			1.404							0.702
AV		1.365	2.047	1.322		1.365							0.682
		4			-4-	,		FIN	AL AT	TAIN	MENT I	LEVEL	1.356

				CENT	**		To	tal atm	ength	7		Sub	ject	POWI	ER SYST	EM A	NALYS	IS-I			Subjec	t Code	21E	E53					
Academic yea	2023			SEM		(2025)			-	ACCI	CNEN		QUIZ(MARKS				Total CC)s ATTAI	NMENT			% of I	ndividua	I CO	
SEM:V	IA T	EST 1	(20M)												CO1=10	CO2	CO3	604	CO5	CO1=28	CO2=28	CO3=28	CO4=38	CO5=28	CO1	CO2	CO3	CO4	CO5
USN	CO1	CO ₂	ГОТАІ	CO ₃	CO4		CO4	CO5	TOTAL	COI	-	7	7	7	3.6	3.6	3.6	3.6	3.6	15.6	15.6	20.6	20.6	15.6	55.71	55.71	73.57	54.21	55.71
1SV21EE001	5	5	10	10	7	17	3	5	8	7	/		7.6	7.6	3.0	5.0	6	6	6	23.6	23.6	23.6	31.6	22.6	84.29	84.29	84.29	83.16	80.71
1SV21EE003	10	10	20	10	9	19	9	9	18	7.6	7.6	7.6	7.6	7.6	6	0	0	4	4	18.2	17.2	21.2	22.2	19.2		61.43		58.42	68.57
1SV21EE005	7	6	13	10	7	17	4	8	12	7.2	7.2	7.2	7.2	7.2	4	4	2.6	2.6	2.6	16.8	15.8	16.8	23.8	16.8	60.00	56.43	60.00	62.63	
1SV21EE006	10	9	19	10	8	18	9	10	19	3.2	3.2	3.2	3.2	3.2	3.6	3.6	3.6	3.6	3.6			22.6	30.6	22.6	77.14	73.57	80.71		80.71
1SV22EE401	9	8	17	10	9	19	9	10	19	7.6	7.6	7.6	7.6	7.6	5	5	5	5	5	21.6	20.6					51.43			
1SV22EE403	6	5	11	10	3	13	2	8	10	5.8	5.8	5.8	5.8	5.8	3.6	3.6	3.6	3.6	3.6	15.4	14.4	19.4	14.4	17.4	55.00				
15V22EE404	0	9	18	10	5	15	2	10	12	6.4	6.4	6.4	6.4	6.4	7	7	7	7	7	22.4	22.4	23.4	20.4	23.4	80.00	80.00	and the second second	53.68	_
1572255404	9	3	10	10	-		-			UP STOR		NEAD A	No. of the last												68.16	66.12	75.31	61.50	70.20
		13.00	CONTRACTOR OF	NOT HERE	1000	MONTH AND	DESCRIPTION OF THE PERSON OF T	13500000				E.E.D.DEVE								A DESCRIPTION OF COLUMN	R.5311203.01168618	AND MAYOR BOLLEY	IVERSON RECEIVED ON						

G. H. Rämz

6. H. Rows

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL

PRINCIPAL SIET. TUMKUR.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUBJECT	POWER ELECTRONICS	SUBJECT CODE	21EE54
SUBJECT	TOWER ELECTROMES		

COURSE OUTCOME

CO1: To give an overview of applications power electronics, different types of power semiconductor devices, their switching characteristics. To explain power diode characteristics, types, their operation and the effects of power diodes on RL circuits

CO2: To explain the techniques for design and analysis of single phase diode rectifier circuits

CO3: To explain different power transistors, their steady state and switching characteristics and imitations

CO4: To explain different types of Thyristors, their gate characteristics and gate control requirements

CO5: To explain the design, analysis techniques, performance parameters and characteristics of controlled rectifiers, DC-DC, DC-AC converters and Voltage controllers

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

P06 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF E	NGIN	EERIN	G & T	ECHNO	OLOGY	7
FACULTY	NAM	Œ I	Mr. G.	H. RA	VIKU	MAR						
BRAN	CH		I	EEE		A	CADI	EMIC Y	EAR		2023	-24
COURSE	В.	E	SEM	ESTE	R	V	S	SECTIO	N		EEE	
SUBJECT		PO	WER E	LECT	RONI	CS		SUBJE	CT C	ODE	21EI	E54
CO & PO M	APPII	NG										
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	-	-	-	-	-	-	-	_	-	-	2
CO2	2	-	3	-	-	-	-	-	-	-	-	2
CO3	2	2	-	-	-	-	-	-	-	-	-	2
CO4	28	2	-	-	-	-	-	-		-	-	2
CO5	2	2	3	-	-	-	-	-	-	-	-	2
AVERAGE	2	2	3	-	-	-		-	-	-	-	2
	- 40					OVE	RAL	L MAPI	PING	OF SUE	JECT	2.25

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	69.08	1.381	-	-	-	-	-	-	-	-	-	-	1.381
CO2	67.55	1.351		2.026	-	-	-	-	-	-	-	-	1.351
CO3	60.92	1.218	1.218	-	-	-	-	-	-	-	-	-	1.218
CO4	58.42	1.168	1.168	-	-	-	-	-	-	-	-	-	1.168
· CO5	73.67	1.473	1.473	2.21	-	-	-	-	-	-	-	-	1.473
AV		1.318	1.286	2.118	-	-		-	-	-	-	-	1.318
		0						FIN	AL AT	TAINN	MENT L	EVEL	1.51

Academic ve	2023	3-24		SEM	V		Tot	tal str	ength	7		Sub	ject	POWI	ER ELEC	CTRON	ICS				Subjec	t Code	21H	EE54					
SEM:V			(20M)			(20M)	IA T	EST 3	(20M)	ASSI	GNEM	IENT /	QUIZ(40 M)	18 1	SEE N	MARK	S(50)			Total CO	s ATTA	INMEN'	T		% of I	Individu	al CO	costan wind
USN	COI	CO2	TOTAL	CO3	CO4	TOTAL	CO4	CO5	TOTAL	CO1	CO2	CO3	CO4	CO5	CO1=10	CO2	CO3	CO4	CO5	CO1=28	CO2=28	CO3=28	CO4=38	CO5=28	CO1	CO2	CO3	CO4	CO5
1SV21EE001	5	2	7	8	4	12	4	8	12	7.6	7.6	7.6	7.6	7.6	5.4	5.4	5.4	5.4	5.4	18	15	17	21	21	64.29	53.57	60.71	55.26	75.00
1SV21EE003	10	9	19	10	8	18	8	10	18	7.8	7.8	7.8	7.8	7.8	5.2	5.2	5.2	5.2	5.2	23	22	21	29	23	82.14	78.57	75.00	76.32	82.14
1SV21EE005	6	6	12	10	4	14	5	9	14	7.6	7.6	7.6	7.6	7.6	5	5	5	5	5	18.6	18.6	16.6	21.6	21.6	66.43	66.43	59.29	56.84	77.14
1SV21EE006	8	7	15	5	4	9	7	11	18	3.2	3.2	3.2	3.2	3.2	3.6	3.6	3.6	3.6	3.6	14.8	13.8	10.8	17.8	17.8	52.86	49.29	38.57	46.84	63.57
1SV22EE401	9	10	19	10	7	17	8	11	19	7.6	7.6	7.6	7.6	7.6	5	5	5	5	5	21.6	22.6	19.6	27.6	23.6	77.14	80.71	70.00	72.63	84.29
1SV22EE403	7	8	15	6	4	10	2	6	8	6.4	6.4	6.4	6.4	6.4	5	5	5	5	5	18.4	19.4	15.4	17.4	17.4	65.71	69.29	55.00	45.79	62.14
1SV22EE404	7	7	14	8	5	13	2	6	8	6.8	6.8	6.8	6.8	6.8	7.2	7.2	7.2	7.2	7.2	21	21	19	21	20	75.00	75.00	67.86	55.26	71.43
2512222404		<u> </u>	. 100	7					Mark Control							J. O. Se	(elsu)								69.08	67.55	60.92	58.42	73.67

G. H. Proving

GHROWS

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL

PRINCIPAL SIET, TIMPLE

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

SUBJECT	POWER SYSTEMS-2	SUBJECT CODE	18EE71	
---------	-----------------	--------------	--------	--

COURSE OUTCOME:

CO1: form the different incidence matrices for a given power system network formulate network matrices by different methods for a given power system network

CO2:Identify different types of buses

CO2,3: perform load flow analysis for a given power system

CO4: perform economic generation scheduling of power generation plants

CO4,5: perform transient stability study of a given power system

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULT	Y NA	ME	TANI	JJA K.	S	Las A		NEERI				
BRA	NCH	8		EEE		1	ACAD	EMIC	YEAR		202	2.0.1
COURSE	В	.E	SEN	MESTE	R	VII		SECTIO			EEE	3-24
SUBJECT CO & PO M			OWE	R SYST	TEMS-	-2		SUBJE		ODE	18E	E71
eo a Tow												
18EE71.1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	3	3	2	3	3	-	-	-		3	
18EE71.2	1	3	3	2	3	3						3
18EE71.3	1	3	3	2	3	3				-	3	3
8EE71.4	1 8	3	3								3	3
8EE71.5	-			2	3	3					3	3
Avg.	1	3	3	2	3	3					3	3
Avg. Mapping	1	3	3	2	3	3					3	3
										F SUBJ		J

CO	ANDP	OATTA	INME	VT									
	CO%	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	Posts	-	
CO1.	68.17								100	F09	PO10	PO11	PO
		2.04	2.0451	1.3634	2.0451	2.0451	2.0451	-	-	-	-		
CO2	72.74	2.18	2.1822	1.4548	2.1822	2.1822		-		_		2.0451	2.0
CO3	67.20	2.016	2.016	1 244			2.1022					2.1822	2.18
CO4 ·	71.2		2.010	1.344	2.016	2.016	2.016					2.016	2.0
	/1.2	2.136	2.136	1.424	2.136	2.136	2.136						2.0
CO5	68.28	2.0484	2.0484	1.3656	2 0							2.136	2.1
VERAGE	56.92		2.0404	1.3656	2.0484	2.0484	2.0484					2.0484	2.04
LIUIGE	30.92	0.5692	1.7076	1.7076	1.1384	1.7076	0.5692						2.04
											-	1.7076	1.70
(1)								FINA	L ATT	AINM	ENT L	EVEL	1.4636
							l Minte		*				

Academic vear	202	3-24		SEM	VII		To	tal str	ength	8		Sub	ject	PC	WER SY	STEM	S-2	* (Subj	ect Code	18E	E71							
SEM:VII		EST 1				(30M)	IA T	EST 3	3(30M)	ASS	IGNEM	IENT/	QUIZ(1	0 M)		SEE	MARKS	6(60)			Total C	Os ATTAI	NMENT			% (of Individu	al CO	
USN									TOTAL	CO1	CO2	CO3	CO4	CO5	CO1=12	CO2	CO3	CO4	CO5	CO1=29	CO2=34	CO3=34	CO4=44	CO5=49	CO1	CO2	CO3	CO4	CO5
1SV19EE003	15	10.5	26	15	7.5	23	1.5	1.5	3	2	2	2	2	2	5.8	5.8	5.8	5.8	5.8	22.8	18.3	15.3	14.8	5	78.62	53.82	45.00	43.53	10.20
15V19EE018	6.75	15	22	15	6	21	15	6.75	22	2	2	2	2	2	7.2	7.2	7.2	7.2	7.2	15.95	39.2	15.2	24.2	15.95	55.00	89.09	52.41	83.45	55.00
1SV20EE001	0.73	12	22	7.5	15	23	15	7.5	23	2	2	2	2	2	4.6	4.6	4.6	4.6	4.6	15.6	26.1	21.6	21.6	14.1	53.79	59.32	74.48	74.48	48.62
1SV20EE001	15	15	30	15	15	30	10	10	20	2	2	2	2	2	5.8	5.8	5.8	5.8	5.8	22.8	37.8	22.8	17.8	17.8	78.62	85.91	78.62	61.38	61.38
	9.5	15	29	15	9.5	29	15	15	30	2	2	2	2	2	6.4	6.4	6.4	6.4	6.4	17.9	38.4	17.9	23.4	23.4	61.72	87.27	61.72	80.69	80.69
1SV20EE003		15		13	15	21		6.75		2	2	2	2	2	5.8	5.8	5.8	5.8	5.8	21.3	21.3	22.8	22.8	14.55	73.45	48.41	78.62	78.62	50.17
1SV20EE004	13.5	7.5	21	6				_	29	2	2	2	2	2	7	7	7	7	7	21.75	38.25	24	23.75	24	75.00	86.93	82.76	81.90	82.76
1SV20EE006	12.75	15	28	14.3	15	29	14.75	15		2	2	- 2	2	- 2	6.8	₹8.8	6.8	6.8	6.8	20.05	31.3	18.55	19.3	79.3	69.14	71.14	63.97	66.55	66.55
1SV20EE007	11.25	10.5	22	12	9.75	222	10.5	10.5	21	2	-2	2	2	2	0.0	0.0	0.6	0.8	0.8	20.03	31.3	10.55	15.5	15.5	03.14	71.14	03.57	00.55	00.55
										7338/2-1																			
																									68.17	72.74	67.20	71.32	56.92

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL SIET. TUMKUR.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR-572 106.

DEPARTMENT OF EEE

SUBJECT	POWER SYSTEM PROTECTION	SUBJECT CODE	18EE72
SCHOLOI	O II DIN DIDIZINI INO IZOITOIT	2020201 0022	All and the second seco

COURSE OUTCOME

CO1. Discuss performance of protective relays, components of protection scheme and relay terminology over current protection.

CO2. Explain the working of distance relays and the effects of arc resistance, power swings, line length and

source impedance on performance of distance relays.

CO3. Discuss pilot protection, construction, operating principles and performance of differential relays and discuss protection of generators, motors, transformer and Bus Zone Protection.

CO4. Explain the construction and operation of different types of circuit breakers.

CO5. Outline features of fuse, causes of over voltages and its protection, also modern trends in Power System Protection

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural

sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms

of the engineering practice.

P09 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve

contemporary issues and acquire lifelong learning.

FACULT	Y NAN	1E	UMAE	BAI				Li oti		ra.u.a		, ,
BRAN	NCH,]	EEE		A	CAD	EMIC Y	YEAR		2023	3-24
COURSE	В.	E	SEM	IESTE	R	VII	5	SECTIO	N			
SUBJECT	PC	WER	SYST	EM P	ROTE	ECTION	N	SUBJE	CT C	ODE	18EI	E72
CO & PO M	APPIN	\G					Service C				- 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-		-	-	-	-	-
CO2	2	2	-	7:-	-	2	-			-		-
CO3	3	-	-	-	-	2		-	-	-	-	-
CO4	3,	-	_	-	-	2				<u>-</u>		
CO5	2	2	_	-	-	2	2	-	-	-	-	2
VERAGE	2.6	2			7 (1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	2	2					
												2

	DIOA	1 17KIIVI	VILLI										
	CO%	RO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	65.68	1.97											1012
CO2	50.91	1.01				1.01							
CO3	61.78	1.85				1.23							
CO4	71.41	0.34				0.22							0.00
CO5	72.61	1.45	1.45			1.45	1.45						0.22
AVERAGE	52.478	1.324	1.45			.977	1.45						0.22
		1						FINA	L ATT	AINM	ENT L	EVEL	1.0843

Subject	P	ower S	ystem P	rotectio	on															Sub	code	18E	E72								
EM: VII, EI	IA	TEST	1	IA	TEST	2	IA	TEST	3			Assig	nmen	t				S	EE	The same			NO PLANTS	FOTA	L	The Section	Manufacture of the second		Averag	ge	
USN	CO1	CO2	TOTAL	CO3	CO4	TOTAL	CO4	CO5	TOTAL	CO1	CO2	CO3	CO4	CO5	TOTAL	CO1	CO2	CO3	CO4	CO5	TOTAL	CO1(34)	CO2(34)	CO3(34	CO4(54)	CO5(34)	CO1	CO2	CO3	CO4	CO5
1sv19EE003	13	13	26	17	3	20	13	0	13	2	2	2	2	2	10	7	7	7	7	7	35	22	22	26	25	9	65	65	76	46	26
1SV19EE018	13	16	29	14	16	30	16	8	24	2	2	2	2	2	10	7.6	7.6	7.6	7.6	7.6	38	22.6	25.6	23.6	41.6	17.6	66	75	69	77	52
1SV20EE001	13	11	24	8	9	17	0	0	0	2	2	2	2	2	10	4.2	4.2	4.2	4.2	4.2	21	19.2	17.2	14.2	15.2	6.2	56	51	42	28	18
1SV20EE002	16	17	33	15	16	31	0	0	0	2	2	2	2	2	10	5.8	5.8	5.8	5.8	5.8	29	23.8	24.8	22.8	23.8	7.8	70	73	67	44	23
1SV20EE003	17	17	34	19	0	20	18	16	34	2	2	2	2	2	10	10.8	10.8	10.8	10.8	10.8	54	29.8	29.8	31.8	30.8	28.8	88	88	94	57	85
1SV20EE004	17	17	34	16	18	34	12	15	27	2	2	2	2	2	10	7	7	7	7	7	35	26	26	25	39	24	76	76	74	72	71
1SV20EE006	17	14	31	18	18	36	18	12	30	2	2	2	2	2	10	8	8	8	8	8	40	27	24	28	46	22	79	71	82	85	65
1SV20EE007	13	16	26	12	7	19	16	6	22	2	2	2	2	2	10	5.8	5.8	5.8	5.8	5.8	29	20.8	23.8	19.8	30.8	13.8	61	70	58	57	41
TOTAL	119	121	237	119	87	207	93	57	150	16	16	16	16	16	80	56.2	56.2	56.2	56.2	56.2	281	191.2	193.2	191.2	252.2	129	562	568	562	467	380
otal student	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Average	14.88	15.13	29.625	14.88	10.88	25.88	11.625	7.125	18.75	2	2	2	2	2	10	7.025	7.03	7.025	7.025	7.025	35.13	23.9	24.15	23.9	31.53	16.15	70.3	71.0	70.3	58.4	47.5

lug

G. H. Ramz

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL SIET. TUMKLIR

DEPARTMENT OF EEE

SUBJECT	Solar & Wind Energy	SUBJECT CODE	18EE731
---------	---------------------	--------------	---------

COURSE OUTCOME

1.To discuss the importance of energy in human life, relationship among economy and environment with energy use.

2. To discuss the increasing role of renewable energy, energy management, energy audit, energy efficiency, energy intensity.

3. To discuss energy consumption status in India, energy saving potential and energy conservation efforts in India

4. To explain the concept of energy storage and the principles of energy storage devices.

5. To discuss the characteristics and distribution of solar radiation, measurement of components of solar radiation and analysis of collected solar radiation data.

6. To explain availability of solar radiation at a location and the effect of tilting the surface of collector with respect to horizontal surface.

7.To describe the process of harnessing solar energy in the form of heat and working of solar collectors.

8. To discuss applications of solar energy including heating and cooling.

9. To discuss the operation of solar cell and the environmental effects on electrical characteristics of solar cell 10. To discuss basic Principles of Wind Energy Conversion and to compute the power available in the wind

11. To discuss forces on the Blades, Wind Energy Conversion, collection of Wind Data, energy estimation and site selection.

12.To discuss classification of WEC Systems, its advantages and disadvantages of WECS, and Types of Wind Machines (Wind Energy Collectors).

13. To evaluate the performance of Wind-machines, Generating Systems.

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

COLLEGE		SHE	RIDEV	INST	ITUTI	E OF E	NGI	NEERIN	NG & 7	TECHN	OLOG	Υ.
FACULT	Y NAN	/IE	MRS.	SHWE	THA	ΓМ	15.21				#/A	
BRA	NCH			EEE		A	CAD	EMIC Y	YEAR		2023	3-24
COURSE	В.	E	SEM	IESTE	R	VII		SECTIO	ON			
SUBJECT			Solar &	Wind	Energy			SUBJE	CCT C	ODE	18EF	E654
CO & PO M	IAPPI	NG				i il k						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	0	1	1	1	1	0	0	0	1
CO2	3	3	2	1	1	1	0	0	0	0	0	1
CO3	3	2	1	1	1	1	1	1	0	0	0	1
CO4	3	2	2	1	0	1	1	1	0	0	0	1
CO5	3	1	2	0	1	2	1	1	0	0	1	1
AVERAGE	3	2	1.6	0.6	0.8	1.2	0.8	0.8	0	0	0.2	1
						OVE	RALI	MAPP				1.2

COA	NDFU	AIIAI	MMENT		- 4								
	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	70	2.1	1.4	0.7	0	0.7	0.7	0.7	0.7	0	0	0	0.7
CO2	71	2.13	2.13	1.42	0.71	0.71	0.71	0	0	0	0	0	0.71
CO3	70	2.1	1.4	0.7	0.7	0.7	0.7	0.7	0.7	0	0	0	0.7
CO4	58	1.74	1.16	1.16	0.58	0	0.58	0.58	0.58	0	0	0	0.58
CO5	48	1.44	0.48	0.96	0	0.48	0.96	0.48	0.48	0	0	0.48	0.48
AVERAGE	63.6	1.902	1.314	0.988	0.398	0.518	0.73	0.492	0.492	0	0	0.096	0.634
								FINA	L ATT	AINM	ENT LI	EVEL	0.7564

SEM: VII, EEE	L	A TEST	1	IA	TEST	2	IA	TEST	3			Assign	ment					S	EE					TOTA	L				Average	e	
USN	CO1	CO2	TOTAL	CO3	CO4	TOTAL	CO4	CO5	TOTAL	CO1	CO2	CO3	CO4	CO5	FOTAL	CO1	CO2	CO3	CO4	CO5	TOTAL	CO1(34)	CO2(34)	CO3(34)	CO4(54)	CO5(34)	CO1	CO2	CO3	CO4	CO5
1sv19EE003	13	13	26	17	3	20	13	0	13	2	2	2	2	2	10	7	7	7	7	7	35	22	22	26	25	9	65	65	76	46	26
1SV19EE018	13	16	29	14	16	30	16	8	24	2	2	2	. 2	2	10	7.6	7.6	7.6	7.6	7.6	38	22.6	25.6	23.6	41.6	17.6	66	75	69	77	52
1SV20EE001	13	11	24	8	9	17	0	0	0	2	2	2	2	2	10	4.2	4.2	4.2	4.2	4.2	21	19.2	17.2	14.2	15.2	6.2	56	51	42	28	18
1SV20EE002	16	17	33	15	16	31	0	0	0	2	2	2	2	2	10	5.8	5.8	5.8	5.8	5.8	29	23.8	24.8	22.8	23.8	7.8	70	73	67	44	23
1SV20EE003	17	17	34	19	0	20	18	16	34	2	2	2	2	2	10	10.8	10.8	10.8	10.8	10.8	54	29.8	29.8	31.8	30.8	28.8	88	88	94	57	85
1SV20EE004	17	17	34	16	18	34	12	15	27	2	2	2	2	2	10	7	7	7	7	7	35	26	26	25	39	24	76	76	74	72	71
1SV20EE006	17	14	31	18	18	36	18	12	30	2	2	2	2	2	10	8	8	8	8	8	40	27	24	28	46	22	79	71	82	85	65
1SV20EE007	13	16	26	12	7	19	16	6	22	2	2	2	2	2	10	5.8	5.8	5.8	5.8	5.8	29	20.8	23.8	19.8	30.8	13.8	61	70	58	57	41
TOTAL	119	121	237	119	87	207	93	57	150	16	16	16	16	16	80	56.2	56.2	56.2	56.2	56.2	281	191.2	193.2	191.2	252.2	129	562	568	562	467	380
Total students	8	8	8	8	8	8	8	8	8	8	8	8	. 8	8	8	8	8	8	8	8	8	8	- 8	8	8	8	8	8	8	8	8
Average	14.875	15.13	29.625	14.875	10.9	25.875	11.625	7.125	18.75	2	2	2	2	2	10	7.025	7.025	7.025	7.025	7.025	35.125	23.9	24.15	23.9	31.525	16.15	70.294	71.029	70.294	58.380	47.500

SOLAR AND WIND 23-24

\$

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL SIET. TUMKUR.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR-572 106.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUBJECT	INDUSTRIAL DRIVES & APPLICATIONS	SUBJECT CODE	18EE741
---------	----------------------------------	--------------	---------

COURSE OUTCOME

CO1: Explain the advantages, choice and control of electric drive

CO2: Explain the dynamics, generating and motoring modes of operation of electric drives

CO3: Explain the selection of motor power rating to suit industry requirements

CO4: Analyze the performance & control of DC motor drives using controlled rectifiers

CO5: Analyze the performance & control of converter fed Induction motor, synchronous motor & stepper motor drives

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	NAM	Œ I	Mr. G.	H. RA	VIKU	MAR						
BRAN	СН		F	CEE	ken a	A	CAD	EMIC Y	EAR		2023	-24
COURSE	В.	E	SEM	ESTE	R	VII		SECTIO	N		EEE	
SUBJECT		IND	USTR	IAL DI		&		SUBJE	CT C	ODE	18EE	741
CO & PO M	APPII	NG				1.10-20						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	2
CO2	2	3	-1	-	-	- [-		-	-	- ,	2
CO3	2	3	-	-	-	-	-	-	-	-	-	2
CO4	2	3	-	-	-	-	-	-	-	-	_	2
CO5	2	2	-	-	-	-	-	-	-	-	-	2
AVERAGE	2	2	-	-	-	-	-	-	-	-	_	2
	Ŕ					OVE	RAL	L MAP	PING	OF SUE	ВЈЕСТ	2

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	49.74	0.99		-	-	-	-	-	-	-	-	-	0.99
CO2	47.16	0.943	1.414		-	-		-	-	-	-	-	0.943
CO3	58.36	1.167	1.75	-	-	-	-	-	-	-	-	-	1.167
CO4	58.36	1.167	1.75	-	-	-	= -	-	-	2	-	-	1.167
CO5	70.85	1.417	1.417	-	-	-	-	-	-	-	-	-	1.417
AV		1.136	1.582	-	-	-	-	-	-	-	-	-	1.136
								FIN	AL AT	TAIN	MENT I	EVEL	1.28

	1000						-		- 12			Sub	iont	INDIIS	STRIAL	DRIVE	S& Al	PPLICA	ATION	IS				NUMBER TO BE	nakasa	Subjec	t Code	18EE741	
Academic ye	2023			SEM			A STATE OF THE PARTY OF THE PAR		ength	A CCT	CNIEN		ARTON AND				MARKS				Total CO	s ATTA	INMEN	Γ		% of	Individu	al CO	
SEM:VII									(30M)			ENT /				The second second		CO4	COS				CO4=29		CO1	CO2	CO3	CO4	CO5
USN	CO1	CO2	ГОТАІ	CO3	CO4	TOTAL	CO5	CO5	TOTAL	CO1	CO2	CO3	CO4	COS	CO1=12			THE PERSON NAMED IN	200	14.8	14.8	14.8	16.8	24.8	51.03	51.03	51.03	57.93	56.36
1SV19EE003	8	8	16	8	10	18	9	9	18	2	2	2	2	2	4.8	4.8	4.8	4.8	4.8		8.2	18.2	18.2	33.2	42.07	28.28	62.76	62.76	75.45
1SV19EE018	6	2	8	12	12	24	14	13	27	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	12.2				28.8	26.90	30.34	51.03	37.24	65.45
1SV20EE001	3	4	7	10	6	16	12	12	24	2	2	2	2	2	2.8	2.8	2.8	2.8	2.8	7.8	8.8	14.8	10.8						70.91
1SV20EE002	0	0	17	-	5	11	12	13	25	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	15.2	14.2	12.2	11.2	31.2	52.41	48.97	42.07	38.62	-
	9	0		0	12	23	10	10	20	2	2	2	2	2	8.4	8.4	8.4	8.4	8.4	16.4	15.4	21.4	22.4	30.4	56.55	53.10	73.79	77.24	69.09
1SV20EE003	6	5	11	11	12					2	2	2	2	2	4.6	4.6	4.6	4.6	4.6	16.6	14.6	14.6	15.6	35.6	57.24	50.34	50.34	53.79	80.91
1SV20EE004	10	8	18	8	9	17	15	14	29	2	2	2	2	2	5.6	5.6	5.6	5.6	5.6	19.6	21.6	22.6	21.6	36.6	67.59	74.48	77.93	74.48	83.18
1SV20EE006	12	14	26	15	14	29	14	15	29	2	2	2	2	2				4.8	4.8	12.8	11.8	16.8	18.8	28.8	44.14	40.69	57.93	64.83	65.45
1SV20EE007	6	5	11	10	12	22	11	11	22	2	2	2	2	2	4.8	4.8	4.8	4.0	4.0	12.0	11.0	10.0	20.0	25.0	49.74	47.16		58.36	70.85
REPORTED IN	210.50	100		TOTAL STATE							V 100									100				-0-2	43.74	17.120	50.00	-,0	

G. H. Rows

G. H. Rows

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL

PRINCIPAL SIET THEAD

DEPARTMENT OF CIVIL ENGINEERING

SUBJECT ENVIRONMENTAL PROTECTION SUBJECT CODE 18CV753

COURSE OUTCOME

• **CO1**. Appreciate the elements of Corporate Environmental Management systems complying to international environmental management system standards.

• CO2. Lead pollution prevention assessment team and implement waste minimization options.

• **CO3.** Develop, Implement, maintain and Audit Environmental Management systems for Organizations.

PROGRAM OUTCOMES

 PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

 PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

 PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

• **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, Analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering

activities.

• P06 The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal, and cultural issues.

 PO7 Environment and sustainability: Understand the impact of the professional engineering Solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

 PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the

Engineering community and with the society.

• **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

• PO12 Life-long learning: recognition of the need for, and an ability to engage in, to resolve

contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF E	NGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY N.	AME]	Mrs. Sl	REELA	AKSH	MI S						
BRANCE	I		C ENGIN	IVIL NEERI	NG	A	CAD	EMIC Y			2023	-24
COURSE	В.	E	SEM	ESTE	R	7		SECTIO	N			
SUBJECT	EN		NMEN ND MA			ECTIO T	N	SUBJE	CT CC	ODE	18CV	753
CO & PO MAPPIN	G											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	1							1
CO2	2	1	1	1	1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2
CO3	3	1	1	1	1							2
AVERAGE	2.4	2	1	1	1							1.75
						OVE	RAL	L MAP	PING	OF SUI	BJECT	1.83

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0.71	1.42	0.71	0.71	0.71	0.71							0.71
CO2	0.48	0.95	0.48	0.48	0.48	0.48							0.96
CO3	0.80	2.39	0.8	0.8	0.8	0.8							1.6
AVERAGE	0.48	0.95	0.48	0.48	0.48	0.48							1.09
					FINA	L AT	TAINN	MENT	LEVE	LOFT	THE CO	URSE	0.63

Srielakshmi. S COURSE INSTRUCTOR

G. H. Ramz

HOD
Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL SIET TUMKUR.

SUB CODE - 18CV753

ENVIRONMENTAL PROTECTION AND MANAGEMENT

2023 - 2024 ODD

VIITH SEM

		IA1		14	12		IA3		ASS	IGNM	ENT	TOTAL				SEE				G LAS HER		
	1	CO1	CO2	CO1	CO2	CO1	CO2	CO3	CO1	CO2	CO3		CO1	CO2	CO3		CO1	CO2	CO3	CO1	CO2	CO3
1SV19EE003	KAVYAG	15	11	16	14	10	10		4	4	2	10	7	7	7	36	52	39	9	0.703	0.527	0.281
	SYEDSAIFULLA	1	0	22	8	0	14	18	4	4	2	10	10.2	10.2	10.2	51	37.2	26	30.2	0.503	0.351	0.944
	BALKHIS BANU K	20	0	24	4	0	20	10	4	4	2	10	4.8	4.8	4.8	24	52.8	28	16.8	0.714	0.378	0.525
	B MADHURA	18	8	11	11	0	20	18	4	4	2	10	7.8	7.8	7.8	39	40.8	43	27.8	0.551	0.581	0.869
15V20EE002		17	12	22	14	0	19	19	4	4	2	10	9.2	9.2	9.2	46	52.2	49	30.2	0.705	0.662	0.944
	A DESCRIPTION OF THE PARTY OF T	14	14	22	13	17	0	19	4	4	2	10	9.6	9.6	9.6	48	66.6	31	30.6	0.900	0.419	0.956
	NAGAVENI N	18	14	23	9	0	18	19	1	1	2	10	7	7	7	35	52	45	28	0.703	0.608	0.875
1720世纪日常307万年175万万	SHWETHA N		-				10	19	4	4	2	10	10	10	10	50	66	20	31	0.892	0.270	0.969
1SV20EE007	M YOGANANDA	20	12	16	4	16	0	-	- 4	22	2		-			329	419.6	281	204	5.670	3.797	6.363
	TOTAL	123	71	156	77	43	101	122	32	32	16	80	65.6	65.6	65.6							
	STUDENTS	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	0.108	0.108	0.250
	AVERAGE	15.375	8.88	19.5	9.63	5.38	12.6	15.3	4	4	2	10	8.2	8.2	8.2	41.125	52.45	35.125	25.5	0.709	0.475	0.795

					DO I	Iappi	ng .				
Os											
1	2	3	4	5	6	7	8	9	10	11	#
2	1	1	.1	1	0	0	0	0	0	0	1
2	1	1	1	1	0	0	0	0	0	0	2
3	1	1	1	1	0	0	0	0	0	0	2
The state of the s	1 2 2 3	1 2 2 1 2 1 3 1	1 2 3 2 1 1 2 1 1 3 1 1	1 2 3 4 2 1 1 1 2 1 1 1 3 1 1 1	1 2 3 4 5 2 1 1 1 1 1 2 1 1 1 1 3 1 1 1 1	1 2 3 4 5 6 2 1 1 1 1 1 0 2 1 1 1 1 0 3 1 1 1 0	1 2 3 4 5 6 7 2 1 1 1 1 0 0 2 1 1 1 1 0 0 3 1 1 1 1 0 0	1 2 3 4 5 6 7 8 2 1 1 1 1 0 0 0 2 1 1 1 1 0 0 0 3 1 1 1 1 0 0 0	1 2 3 4 5 6 7 8 9 2 1 1 1 1 0 0 0 0 2 1 1 1 1 0 0 0 0 3 1 1 1 1 0 0 0 0	1 2 3 4 5 6 7 8 9 10 2 1 1 1 1 0 0 0 0 0 0 2 1 1 1 1 0 0 0 0 0 0 3 1 1 1 1 0 0 0 0 0 0	1 2 3 4 5 6 7 8 9 10 11 2 1 1 1 1 0 0 0 0 0 0 2 1 1 1 1 0 0 0 0 0 0

				(CO PO	ATTAL	NMEN	T					
POs													
COS	% COS	1	2	3	4	5	6	7	8	9	#	#	12
CO1	0.71	1.42	0.7	0.71	0.71	0.71	0	0	0	. 0	0	0	0.71
CO2	0.48	0.95	0.5	0.48	0.48	0.48	0	0	0	0	0	0	0.96
CO3	0.8	2.39	0.8	0.8	0.8	0.8	0	0	0	0	0	0	1.6
Average	0.48	0.95	0.5	0.48	0.48	0.48	0.0	0.0	0.0	0.0	0	0	1.09
		The same			FINIA	LATT	AINM	ENT	= 0.63	33			

Squelakshmi. S COURSE INSTRUCTOR

G. H Ranz

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL

SIET. TUMKUR.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SUBJECT	POWER SYSTEM OPERATION & CONTROL	SUBJECT CODE	18EE81
---------	----------------------------------	--------------	--------

COURSE OUTCOME

CO1: Describe various levels of controls in power systems, architecture and configuration of SCADA

CO2: Develop and analyze mathematical models of Automatic Load Frequency Control

CO3: Develop mathematical model of Automatic Generation Control in Interconnected Power system

CO4: Discuss the Control of voltage, Reactive Power and Voltage collapse

CO5: Explain security, contingency analysis, state estimation of power systems

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics, science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	NAM	Œ I	Mr. G.	H. RA	VIKU	MAR						
BRAN	СН	it et j	I	EEE		A	CAD	EMIC Y	EAR		2023	-24
COURSE	В.	E	SEM	ESTE	R	VIII		SECTIO	N		EEE	
SUBJECT	PC	WER	SYST	EM OI		rion a	&	SUBJE	CT C	ODE	18E1	E 81
CO & PO M	APPII	VG	10000					tion to				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	2	-	-	-	-	-	-	1
CO2	2	3	2	-	2	-	-		-	-	-	1
CO3	28	3	-	-	2	-	-	-	-	-	-	1
CO4	2	3	-		2	-	-		-	11211		1
CO5	2	3	-	-	2	-	-	-	-	-	-	1
AVERAGE	2	3	2	V-	2	1	-		-	-		1
	9					OVE	RAL	L MAPI	PING	OF SUE	TECT	2

COA	AND PU	AIIA	IIIIIII	11	7.5								
	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	70.43	1.408	2.11			1.408							0.704
CO2	70.00	1.4 %	2.1	1.4		1.4							0.7
CO3	60.52	1.21	1.815			1.21							0.605
CO4	60.52	1.21	1.815			1.21							0.605
CO5	71.42	1.428	2.142	2.5		1.428							0.714
AV		1.33	1.99	1.4		1.33							0.665
								FIN	AL AT	TAINN	MENT L	EVEL	1.343

Academic ye	2023	3-24		SEM	VIII		Tot	al str	ength	8		Sub	ject	POW	ER SYS	гем о	PERA	TION &	& CON	TROL				Subject	Code	18EE81			
SEM:VIII	IA T	EST 1	(30M)	IA T	EST 2	2(30M)	IA T	EST 3	(30M)	ASSIG	NEM	ENT/	QUIZ	(10 M		SEE I	MARKS	S(60)			Total CC	s ATTA	INMENT			% of	Individu	ial CO	
USN	CO1	CO2	ГОТАІ	CO3	CO4	TOTA!	CO5	CO5	TOTAL	CO1	CO ₂	CO3	CO4	CO5	CO1=12	CO2	CO3	CO4	CO5	CO1=29	CO2=29	CO3=29	CO4=29	CO5=44	CO1	CO2	CO3	CO4	CO5
1SV19EE003	12	12	24	12	14	26	13	13	26	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	18.2	18.2	20.2	20.2	32.2	62.76	62.76	69.66	69.66	73.18
1SV19EE018	12	12	24	10	12	24	13	13	26	2	2	2	2	2	4.4	4.4	4.4	4.4	4.4	18.4	18.4	18.4	18.4	32.4	63.45	63.45	63.45	63.45	73.64
1SV20EE001	12	8	20	7	5	12	8	8	16	2	2	2	2	2	4.2	4.2	4.2	4.2	4.2	18.2	14.2	11.2	11.2	22.2	62.76	48.97	38.62	38.62	50.45
1SV20EE002	12	9	21	8	5	13	8	9	17	2	2	2	2	2	5.6	5.6	5.6	5.6	5.6	19.6	16.6	12.6	12.6	24.6	67.59	57.24	43.45	43.45	55.91
1SV20EE003	14	11	25	14	12	26	13	13	26	2	2	2	2	2	6.6	6.6	6.6	6.6	6.6	22.6	19.6	20.6	20.6	34.6	77.93	67.59	71.03	71.03	78.64
1SV20EE004	11	15	26	13	13	26	14	15	29	2	2	2	2	2	9.2	9.2	9.2	9.2	9.2	22.2	26.2	24.2	24.2	40.2	76.55	90.34	83.45	83.45	91.36
1SV20EE006	14	15	29	9	8	17	14	15	29	2	2	2	2	2	8.2	8.2	8.2	8.2	8.2	24.2	25.2	18.2	18.2	39.2	83.45	86.90	62.76	62.76	89.09
1SV20EE007	11	15	26	8	6	14	9	8	17	2	2	2	2	2	7	7	7	7	7	20	24	15	15	26	68.97	82.76	51.72	51.72	59.09
															70000										70.43	70.00	60.52	60.52	71.42

G. H.R OWZ

6. H Ramz HOD

PRINCIPAL

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL SIET. TUMKUR.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF EEE

SUBJECT	Power System Planning	SUBJECT CODE	18EE824	
---------	-----------------------	--------------	---------	--

COURSE OUTCOME

CO1.To discuss primary components of power system planning namely load furcating, evaluation of energy resources, provisions of electricity Act and Energy Conservation Act.

CO2. To explain planning methodology for optimum power system expansion, various types of generation, transmission and distribution

CO3. To explain forecasting of anticipated future load requirements of both demand and energy by deterministic and statistical techniques using forecasting tools.

CO4.To discuss methods to mobilize resources to meet the investment requirement for the power sector CO5.To perform economic appraisal to allocate the resources efficiently and take proper investment decisions

PROGRAM OUTCOMES

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 I if a long learning; A reasonition of the mond for and an ability to enough in, to reactive contemporary issues and acquire lifelong learning.

COLLEGE	30 1	SHR	IDEVI	INST	TUTE	OFE	NGIN	EERIN	G & T	ECHN	OLOGY	Y
FACULT	Y NAN		MRS.									
BRAN	NCH	and the second]	EEE	a seal	A	CAD	EMIC Y	YEAR		2023	3-24
COURSE	B.	E	SEM	IESTE	R	VIII	S	SECTIO)N			
SUBJECT	Mon	Const	ion	E.c.	,, 5041			SUDJE	CT C	ODE	1811	824
CO & PO M	IAPPII	٧G			Ligar.		16. 44					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	1	2						1		1
CO2	2	1	2	2	3					1		1
CO3	3	2	2	2	2					1	100000000000000000000000000000000000000	1
CO4	2	2	3	2	3					1		1
CO5	2	2	2	2	2					1		1
VERAGE	2.4	1.8	2	2	2.4					1		
						OVE	RALI	MAPP	INC		TECT	1.8

COA	INDIO	ALIAIN	WENT		<u>Alaina A</u>								
	CO%	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1,	79.9	2.37	1.58	0.79	1.58	1.58					0.79		0.79
CO2	73.4	1.46	0.73	1.46	1.46	2.19					0.73		0.73
CO3	80.3	2.4	1.6	1.6	1.6	1.6					0.8		0.8
CO4	71.1	1.42	1.42	2.1	1.42	2.1					0.71		0.711
CO5.	52.7	1.04	1.04	1.04	1.04	1.04		4.51			0.52		0.52
AVERAGE	71.48	1.738	1.274	1.39	1.42	1.7					0.71		0.71
			FII	NAL AT	TAINM	ENT LI	EVEL						1.3

EEE8th	Sem	IA	TES	71	T 7	A TEC	TO	T .																								
USI		-	100000000	81.8	_	A TES			A TES					gnmen						SEE	S20 5 1				TOTAL						ALI DE SERVICIO	700 1000
		CO1	<u>CO</u> 2		CO3	CO4	Sept.	CO4	CO ₅		CO1	CO2	CO3	CO4	CO5	TOTAL	CO1	CO2	CO3	CO4	CO5	ГОТАІ	CO1	CO			005	001		Averag		:
ISV19E		13	11	24	12	13	25	13	7	20	2	2	2	2	2	10	7.8	7.8	7.8	7.8	7.8			_	CO3	CO4	CO5	CO1	CO2	CO3	CO4	CO5
ISV19E	E018	13	12	25	15	7	22	6	6	12	2	2	2	2	2	10	7.8	7.8			-	39	22.8	20	21.8	35.8	16.8	0.786		0.752	0.814	0.579
ISV20E	E001	14	9	23	14	12	26	8	5	13	2	2	2	2	2				7.8	7.8	7.8	39	22.8	21	24.8	22.8	15.8	0.786	0.752	0.855	0.518	0.545
ISV20E	E002	14	10	24	13	11	24	8	5	10	2	2	2	2	2	10	4.6	4.6	4.6	4.6	4.6	23	20.6	15	20.6	26.6	11.6	0.71	0.538	0.710	0.605	0.400
ISV20E	E003	13	12	25	13	14	27	12	7	20	2	2	2	2	2	10	8	8	8	8	8	40	24	2(23	29	15	0.828	0.690	0.793	0.659	0.517
ISV20E	F004	16	15	31	15	14	29	13	1	20	2	2	2	2	2	10	8.4	8.4	8.4	8.4	8.4	42	23.4	22	23.4	37.4	17.4	0.807		0.807	0.850	0.600
ISV20E		15	13	28	15	14		8	3	11	2	2	2	2	2	10	7.8	7.8	7.8	7.8	7.8	39	25.8	24	24.8	31.8	12.8	0.89				
ISV20E		13	13		15	14	29	8	6	14	2	2	2	2	2	10	8.4	8.4	8.4	8.4	8.4	42	25.4	23	25.4	32.4	16.4			0.855	0.723	0.441
		13	12	25	13	12	25	13	7	20	2	2	2	2	2	10	7.6	7.6	7.6	7.6	7.6	38	22.6	21				0.876	0.807	0.876	0.736	0.566
Tota		111	94	205	110	97	207	77	46	120	16	16	16	16	16	80		60.4	60.4	60.4	60.4		-		22.6	34.6	16.6	0.779	0.745	0.779	0.786	0.572
Total Stu	dent	8	8	8	8	8	8	8	8	8	8	8	8	8	8	0	00	00.4	00.4	00.4	00.4	302	187.4	170 4	186.4	250.4	122.4	6.462	5.8759	6.428	5.6909	4.2207
Avera	ge	13.9	11.8.	25.63	13.8	12.1	25.88	9.6	5.8	15	2	2	2	2	2	10	7.6	0	8	8	8	8	8	8	8	8	8	8	8	8	8	8
	1	18EEE8	24 P	VER SY	STEM F			2.0		2023-2	024		2		2	10	7.6	7.55	7.55	7.55	7.55	37.8	23.43	21	23,3	31.3	15.3	0.808	0.7345	0.803	0.7114	0.5276

-8

Head of the Department
Electrical & Electronics Engineering
Shridevi Institute of Engineering & Technology
TUMKUR-572106.

PRINCIPAL SIET TUMKUR.