COs & POs Mapping and Attainment Odd Semester 2022-2023

Acadeı Year	nic :2022-23 (Odd Sem)	Faculty	: Mr. Prakash J
Subjec	GEODETICAL ENGINEERING	Semester	:3
Code	:21CV32		
Subject	BASIC SURVEYING	SubjectCode:	18CV35
C01	Course Outcomes Possess a sound knowledge of fundamental principles	Geodetics	
CO2	Measurement of vertical and horizontal plane, linear solutions to basic surveying problems.	and angular dime	isions to arrive at
CO3	Capture geodetic data to process and perform analys	is for survey probl	ems]
CO4	Analyse the obtained spatial data and compute areas plane figures as contours	and volumes. Repr	esent 3D data on

PROGRAM OUTCOMES

P01 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions. **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

SIRA ROAD, TUMKUR- 572 106.

P010 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

P011 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

				CO-PO	D-PSO	Mappin	g					
						POs						10
COS	1	2	3	4	5	6	7	8	9	10	11	12
		0	0	0	0	0	1	1	0	0	0	1
C01	3	2		Contraction Name		1	0	1	0	0	0	1
CO2	3	2	0	0	0	1 .	0			0	0	1
CO3	3	2	0	0	0	1		1 second	0			1
	3	2	0	0	0	1	1	1	0	0	0	1
CO4	-	2		0	0	1	1	1	0	0	0	J
Average	3	2	0	0	0							
						0	VERAL	I.MA	PPING	OF SU	BJEC	T = 1

					CO-	the second s	FTAIN POs	MEN'	ſ					
COS	%	1	2	3	4	5	6	7	8	9	10	11	12	
	COS	0.010	0.02	0	0	0	0	0.71	0.71	0	0	0	0.71	1.41
C01	34.01	2.117	2.83	0		and the second second second	Contraction of the local diversion of		1.01	0	0	0	1.01	1.61
CO2	48.76	3.035	1.98	0	0	0	1.01	0		0	0	0	1	1.50
CO3	48.1	2.994	2	0	0	0	1	1	1				1.28	1.76
CO4	61.93	3.855	1.56	0	0	0	1.28	1.28	1.28	0	0	0		1
Average	48.20	3.00	2.09	0.00	0.00	0.00	1.10	1.00	1.00	0.00	0.00	0.00	1.00	1.53
										FI	NIAL AT	TAINN	AENT	1.57

Course Instructor

HOD HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

Principal

PRINCIPAL SIET. TUMKUR.

	THEN NO	Name of the Student		IA1		IA	2	-	IA3			AS	SIGN	MENT	San Links	1.0	CIE	MARKS	5		:	SIE M	ARKS	3	60			CENTAG	
L No.	USN NO	Name of the Student		Contract of	CO2	CO3	TOTAL	CO3	C04	TOTAL	CO1	CO2	CO3	CO4	TOTAL	COI	CO2	CO3		CO4	CO1	CO2	CO3	CO4	SIE	CO1=47.	CO2=3 2.5	CO3=47. 5	CO4=32 5
1 Proven			10 N. 10						10000		2.5	2.5	2.5	2.5	10	16	5 2.5	Sec. Sec.	6.5	7.5	11.8	11.8	11.8	11.8	47	59.47	43.85	55.26	59.23
1	1SV21CV001	B S YAZDAN	14	14	4 0	0 0		4		9	-		-	1.1.1.1.1.1		-	101 CONTRACT.	Constant of	F	10000	8.25			1000000	33	56.32	57.69	50.00	51.54
2	1SV21CV002	BHASKARA B	16	10	5	8 8	16	A CONTRACTOR	5 6	5 11			-	2.5	a she have been a first	-		and the second	15.5	7.5	0	0.25	0	0	0	34.74	29.23	43.16	23.08
3	1SV21CV003	CHANDAN KUMAR	14	14	4	7 8	15	_		15		2.5	-			-		- 2. S. S. S. S. Martin	15.5	7.5	9	9	9	9	36	36.84	66.15	51.58	50.77
4	1SV21CV004	DARSHAN T J	6		6 1	0 9		-	1	5 9	2.5		-					A State of the	18.5	7.5	4.25	4 25	4 25	4 25	17	14.21	36.15	47.89	36.15
5	1SV21CV005	HARSHITHA C G	0	1	0	5 10			5	5 11			-			-		12 10 10 10 10 10	1000	8.5	6.5	6.5	6.5	6.5	26	56.84	58.46	61.05	46.15
6	1SV21CV007	LALAWMPULA	18	1	8 1	0 10	20	0 10	0 (5 16	-		-	-	10	-			22.5	10.0 12.01	1000	10.3	10.3	10.3	1000	A STREET GUILDENSE	54.62	54.21	39.23
7	1SV21CV008	LIANDINGPUIA	14	1	4	5 6	5 11	1	7 (2.5	2.5	5 2.5	2.5		-	5.5 7.5	100 100 100	15.5	2.5	10.3	10.5	10.3		41	56.32	COLUMN STORES	A CONTRACTOR	S COMPANY OF C
8	1SV21CV010	SHANI	14	1	4	5 5	5 10	0	5 1		5 2.5	2.5	5 2.5	2.5	5 1	0 16	5.5 7.5	5	12.5	2.5	6	6	6	0	24	47.37	41.54	38.95	26.15
0	1SV21CV011	SHREYAS M	0		0	3 10	1	3	0	5 :	5 2.5	2.	5 2.5	2.5	5 1	0 2	2.5 5.5	5	12.5	7.5	4	4	4	4	16	13.68	29.23	34.74	35.38
10	15V21CV014	TEJASWINI K	0		0	7 10	0 1'	7	0	0 (2.5	2.	5 2.5	2.5	5 1	0 2	2.5 9.	5	12.5	2.5	9.5	9.5	9.5	9.5	38	25.26	58.46	46.32	36.92
10	1SV21CV014	Y SHILPA	19	1	9 1	0 10	2	0	7 1	8 1	5 2.5	2.	5 2.5	5 2.5	5 1	0 21	1.5 12.	5	19.5	10.5	5.25	5.25	5.25	5.25	21	56.32	54.62	52.11	48.46
12	1SV22CV400	JEEVAN T K	(0	9 10	0 1	9	8	7 1	5 2.5	2.	5 2.	5 2.5	5 1	0 2	2.5 11.	5	20.5	9.5	2.25	2.25	2.25	2.25	9	10.00	42.31	47.89	36.15
12	1SV22CV400	RANJITH V	1	0	0 1	0 9	9 1	9	9	4 1	3 2.5	2.	5 2.	5 2.5	5 1	0 2	2.5 12.	5	20.5	6.5	3.75	3.75	3.75	3.75	15	13.16	50.00	51.05	31.54
13	15V22CV401 1SV22CV402		1		0	8	7 1	5	5	5 1	0 2.	2.	5 2.	5 2.5	5 1	0 2	2.5 10.	5	14.5	7.5	7.5	7.5	7.5	7.5	30	21.05	55.38	46.32	46.15
14	13 12 20 1402	average	8	8	7	9	16	6	4	10	3	3	3	3	10	10	0 10	17		7	6	6	6	6	24	34	49	48	39

1	2				POs	2012					
1	2						terre la plan de prese	C. BOSTALS	0.000	1	
_		3	4	5	6	7	8	9	10	11	1
3	2	0	0	0	0	1	1	0	0	0	1
3	2	0	0	0	1	0	1	0	0	0	1
3	2	0	0	0	1	1	1	0	0	0	1
3	2	0	0	0	1	1	1	0	0	0	1
3	2	0	0	0	1	1	1	0	0	0	1
	3	3 2 3 2	3 2 0 3 2 0 3 2 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 2 0 0 0 1 1 1 3 2 0 0 0 1 1 1 0 3 2 0 0 0 1 1 1 0 3 2 0 0 0 1 1 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 2 0 0 0 1 1 0 0 0 3 2 0 0 0 1 1 1 0 0 0 3 2 0 0 0 1 1 1 0 0 0

161.957		S.C. Mar	1153	2128		(CO-PO	ATTAINN	AENT	11903			THE L	11.5
			State LC		100			POs						10
COS	% COS	1	2	3	4	5	6	7	8	9	10	11	12	
C01	34.01	2.117	2.83	0	0	0	0	0,7056	0.7056	0	0	0	0.706	1.41
CO2	48.76	3.035	1.98	0	0	0	1.01	0	1.0116	0	0	0	1.012	1.61
CO2	48.1	2.994	2	0	0	0	1	0.99793	0.9979	0	0	0	0.998	1.50
CO4	61.93	3.855	1.56	0	0	0	1.28	1.28485	1.2849	0	0	0	1.285	1.76
Averag		3.855	2	0	0	0	1	1	1	0	0	0	1	2
e	1 Contraction	1				-	-		1.5		FINLA	L ATTA	INMENT	1.5

Course Instructor

acherlique,

HOD HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

Mym PRINCIPAL SIET. TUMKUR.

Principal

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF CIVIL ENGINEERING

SUBJECT	EARTH RESOURCES AND ENGINEERING	SUBJECT CODE	21CV34
---------	------------------------------------	--------------	--------

COURSE OUTCOME

CO1. To understand the importance of earth's dynamic interior in civil engineering and Geo Hazard mitigation and management

CO2. To analyse the physical characteristics of the rocks and Minerals for its suitable application in Engineering

CO3.To evaluate earth Process for providing sustainable management and Development through Geoengineering.

CO4. Subsurface Exploration for providing safe and suitable site condition and Earth Resources for **Reengineering** activities

CO5. To application of modern tools and techniques in Earth Resources Management

PROGRAM OUTCOMES

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHRI	DEVI	INSTIT	UTE	OF EN	GIN	EERIN	G & TH	ECHNO	DLOGY	
FACULTY	NAM	E N	/Irs. Ra	dhika 🛛	ΓN							
BRAN	СН	I		VIL EERIN	G	A	CAD	EMIC Y	EAR		2022-	23
COURSE	B.F	C	SEM	ESTER		3	1	SECTIO	N			
SUBJECT		EAR		SOUR(NEERI		ND		SUBJE	ст со	DDE	21CV	/34
CO & PO M	APPIN	łG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PO8	PO9	PO10	PO11	PO12
C01	1											1
CO2	2											2
CO3	2					2						2
C04	2											2
C05	2											2
AVERAGE	1.75					2						1.75
				1		OV	ERA	LL MAI	PING	OF SU	BJECT	1.83

CO AND PO ATTAINMENT

COAN	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	62.64	0.63											0.63
CO2	58.26	1.17											1.17
CO3	61.16	1.22					1.22						1.22
CO4	61.16	1.22											1.22
CO5	60.045	1.20											1.20
AVERAGE	00.043	1.06					1.22						1.06
AVERAGE		1.00			FI	NAL A		NMEN	LEVI	EL OF	THE CO	OURSE	1.11
					rı T								

hard the second	A. Mark		1	All	1	-	1-	otal str		14	1	Subject		1999				Engineering		Station of the		Code: 21C		SAUGE A	Contraction of the	% of	f individual (:0	
	2022-23		SEM	的时间就是					3(30M)		ASSIGNE			MD		S	EE MARKS	(60)	and the second		otal Cos AT CO2=32			C05=32	CO1	CO2	CO3	CO4	COS
SEM:LSEC: C&D			IA 1 CO2 - 20	TEST 2(30	M)	-								C05 2	CO1=10	CO2 = 10	CO3 = 10	CO4=10	CO5 = 10	CO1=52		18	17		57.7	53.1	56.3	56.3	5
USN	CO1 40	the second s					20 0	13	25		2	-	2		3	Star 3	3	3	3	30	17	27 S. 1 CO. 1 CO. 1	and the second second second	CLUDE PLUTE		53.1		53.1	1
SV21CV001	25	25			Cardin Decision	25	12	13	25			1.12 CA. 1.	2		2 2	2	2	3	3	30		17				71.9	75.0	75.0	10000
SV21CV002	26	26			1	26	13	15	36		10.00 mark	- Q.	2	1000	2 3		1 2 3 1 1 1 1 1		4	41		24				62.5		65.6	ha des
SV21CV003	36	36				36		15				A. Carlotter	2	Section 1	2 3	3		and the second second	4	35		21				65.6	68.8	68.8	12/54)
SV21CV004	30	30				30	15						2		2 4	1.212 T		5	5	37		22				68.8	71.9	71.9	1.00
SV21CV005	31	31			-	31	15	16					2	C.C.C.A.	2 3	Sec. 1		4	4	39		23				34.4		37.5	1124
SV21CV007	34			17		34	17	1/	17				2 7		2 1	and the second		1	0	20		12				43.8	50.0	50.0	
SV21CV008	17			9	-	17	8	9				1000	2 2	,	2 2	he street is	2	3	3	25		16				40.6		43.8	
SV21CV010	21			11	-	21	10	11	17			100.00		,	2 3	bu biel the	3	3	3	22		14				40.6		43.8	_
SV21CV011	17			5	-	17	8	9	1/					2	2 3	Sec. 1	3	4	4	21						71.9			
SV21CV014	16	and the second se		1.1.1.1.1.1	-	16	8	8							2 3	8-15-11-1	3	4	4	41						78.1	the second s	78.1	
SV21CV015	36	36	18		-	36	18	18			2				2 4	Land Street	5	5	5	4						59.4			_
SV22CV400	36	36	18	-	-	36	18	18		-	2			2	2 1	Survey and	2	2	2 7	2 34						71.9			_
SV22CV401	31	31	15		-	31	15	16			2		2	2	2	1000	5	5	5	5 35	23	24	2	3 24	75.0	/1.9	13.0	15.0	
SV22CV402	33	33	16	1	7	33	16	17	3	5	2	2	2	-	-		1.46.6	1.1.1.1.1.1.1		1000	1			-				1000 C	
Charles and the	Contraction of the last			1. 11. 11.	1200		-		-		-	-	-		1000 B	CASA ANY						1	-		62.6	58.3	61.2	61.2	
			1.1.1		-			-		-	-	-	-				San Star	1 20	1200	1.0	- Charles and	Sec. 20		Construction of the	62.0	30.5	1		1997
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Ra	dhùl se Ins	truct	tor						•	De		L	JOF	S 10 100	ering 6.		4			M	had	ncipal	LIPA CIPA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	they	J

Acader	nic Year	:2022-23 (ODD Sem)	Faculty	: Dr. G MaheshKumar / Mrs. Radhika T N
Subjec	t	: Construction Management & Entrepreneurship	Semester	:5
Code		:18CV51		
		Course Outco	mes	
C01		project plan based on requirements an ling the activities and their sequence.	d prepare schedule	of a project by
CO2		d labour output, equipment efficiency achieve desired quality and safety.	to allocate resourc	es required for an activity /
		ne economics of alternatives and evalu	ata hanafte and	Charles and the

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

P011 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Academic Year :2022-23 (ODD Sem)

Faculty : Dr. G Mahesh Kumar / Mrs. Radhika T N

abject: Co	onstructi	ion mana	gement	and E	ntrepre	neursh	ip				Subj	ect Co	le: 18	CV5	1
					C	Course	outcor	nes				14 (Alian)			
C01	Outlin	e the con	structio	on man	ageme	nt proc	ess			12					
CO2	Assess	s various	issues	that are	encou	ntered	by eve	ry prof	essiona	l in dis	chargir	ng profe	ession	al dyt	ies.
CO3	Identit	fying the	profess	sional c	bligati	on effe	ectively	with g	lobal o	utlook			N. S.		
					CO-	PO-P	SO Ma	pping		(ac all 1994) (ac all 1994)	<u>k në të jarë të të</u> Tul dega dë të	Parises	121.00		ET S
СО						PC)s							PSOs	,
CU	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	1		in the second se		1			1	1		1	1		2	
CO2	1	1	anna an				;				4115			2	
CO3	1										2	1		2	
Average	1				1			1	1		1.5	1		2	

					CO-	-PO-P	SO A	ttainme	ent							
со						POs	\$							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	0.74				0.74			0.74	0.74		0.74	0.74				
CO2	0.74	0.64														
CO3	0.27				0.27			0.27	0.27		0.55	0.27				
Average	0.58	0.64			0.51			0.51	0.51		0.64	0.51				0.56

Slogur Mr.

SPRINCIPA Sprincipal

Course Instructor

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

HOD

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

SIRA ROAD, TUMKUR- 572 106.

DEPARTMENT OF CIVIL ENGINEERING

SUBJECT	ANALYSIS OF INDETERMINATE STRUCTURES	SUBJECT CODE	18CV52
---------	---	--------------	--------

COURSE OUTCOME

- **CO1.** Determine the moment in indeterminate beams and frames having variable moment of inertia and subsidence using slope defection method
- **CO2.** Determine the moment in indeterminate beams and frames of no sway and sway using moment distribution method.
- CO3. Construct the bending moment diagram for beams and frames by Kani's method.
- CO4. Construct the bending moment diagram for beams and frames using flexibility method

CO5. Analyze the beams and indeterminate frames by system stiffness method.

PROGRAM OUTCOMES

- **P01** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **P05** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- P010 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- P011 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **P012** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF EN	IGIN	EERIN	G & T	ECHNO	DLOGY	
FACULTY	NAM	E N	Ar. MA	NOGN	NA H N	1						
BRAN	СН		(CV		A	CAD	EMIC Y	EAR		2022	-23
COURSE	B.I	E	SEM	ESTEI	R				V			
SUBJECT	AN	VALYS	SIS OF STRU	INDE'		INATI	E	SUBJE	СТ С	ODE	18CV	/52
CO & PO M	APPIN	٩G										
	PO1 PO2 PO3 PO4 P						POT	PO8	PO9	PO10	PO11	PO12
C01	3	3					0					1
CO2	3	3										1
CO3	3	3										1
CO4	3	3										1
C05	3	3	日樹村		学校		1000					1
AVERAGE	3	3										1
						OV	ERAI	LL MAP	PING	OF SU	BJECT	2.33

CO AND PO ATTAINMENT

+

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	59.20	1.77	1.77		-								0.59
CO2	36.19	1.08	1.08										0.36
CO3	70.43	2.11	2.11										0.70
CO4	20	0.6	0.6				14-1-1						0.2
CO5	51.53	1.54	1.54										0.51
AVERAGE	47.47	1.42	1.42										0.47
								FINA	AL AT	ΓAINN	IENT I	EVEL	1.01

-AJAMA accepted

m

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

M PRINCIPAL SIET. TUMKUR.

											C 1	IA	- 1	IA	3		IAI	- 1	IAZ		LA 3	ASSK	SNMENT	MARKS	– 1	SEE					COS ATTAIN	CO4 29		PERCENTAGE OF TOTAL COS ATTAINNMENT
		STUDENT NAME	IAI	IA 2	IA 3	AVG IA	A1	A2	A3	AVGA	IA 1 CO1 30mark	CO2 30marks	C03	CO4 15marks	COS	Avg	1 2	3	1 2	3 1	2 3	coi co	2 CO3	CO4 CC	SEE	CO1 0	02 CO3 0	CO4 CO5	MARK	CO2 29 MARKS	MARKS	MARKS	MARKS	<u>CO1</u> CO2 CO3 CO4 CO5
SL.NO	USN	STUDENT NAME	-			23	10	10	10	10	11.25	514 C. 10	1000		75	13	10	0 5	7 0	19 10	0 0	2	2 2	2	2 11	2.2 2	2.2 2.2	2.2 2.2	15.45	9.45	18.45	4.2	11.7	35.11364 21.47727 63.62069 14.48276 26.59091
1	1SV19CV006	Arvind Sharma Kakchingtabam	11	20	*	-	10	10	-	10	20.25	5.25	14.25		1.5		10		20 0	20 20	15		, ,	2	2 46	92 9	9.2 9.2	9.2 9.2	31.45	26.20	26.2	22.45	26.2	71.47727 59.54545 90.34483 77.41379 59.54545
2	1SV20CV001	Adarsha Sing Okram	20	30	26	36	10	10	10			15.00	15	11.25	15	26	20	11	20 0	20 20							1.8 1.8	18 18	3.8	5.30	3.8	3.8	26.3	8.636364 12.04545 13.10345 13.10345 59.77273
	1SV20CV002	Akash T R	AB	2	23	19	10	10	10	10	0	1.50	0	C	22.5	8	0	0 0	2	20	10	2	1	-	1	a shere			31.35	21.60	216	6.6	32.85	71.25 49.09091 74.48276 22.75862 74.65909
3	1SV20CV003	Dipendra Kumar Pandit	25	30	26	37	10	10	10	10	24.75	15.00	15	(26.25	27	18 1	5	20	20 20	0 15	2	2 2	2	2 23	4.6	4.6 4.6	4.6 4.6						86.93182 54.54545 82.75862 77.58621 54.54545
4	1SV20CV005		30	29	29	40	10	10	10	10	29.25	15.00	0 15	13.5	15	29	20 1	9	20	20 20	11	3 2	2 2	2	2 35	7	7 7	7 7	38.25	24.00	24	22.5	24	
5	1SV20CV006	Lakshmi G V	15	15	21	27	10	10	10	10	15	7.5	7.5		21	17	10 1	0	10	10 18	8 10	2	2 2	2	2 9	1.8	1.8 1.8	1.8 1.8	18.8	11.30	11.3	3.8	24.8	42.72727 25.68182 38.96552 13.10345 56.36364
6	1SV20CV007	Mahalakshmi B	-	-	10	19	10	10	10	10	15.75	0.0		7	15	13	15	6		20	0 1	0 2	2 2	2	2 22	4.4	4.4 4.4	4.4 4.4	22.15	6.40	6.4	13.9	21.4	50.34091 14.54545 22.06897 47.93103 48.63636
7		Pankaj Varma	AB	16		-	-	10		10	26.25		-	1.			20	1.	20 20	2			, ,	2	2 15	3	3 3	3 3	31.25	35.00	5	18.5	20	71.02273 79.54545 17.24138 63.7931 45.45455
8	1SV20CV008	Pramila S	26	30	29	39	10	10	10	-	30	30.0	0 0	13.	15	28	20		20 20				, ,		2 24			4.8 4.8	36.8	21.80	21.8	20.3	21.8	83.63636 49.54545 75.17241 70 49.54545
	1SV20CV009	Sanjana D M	30	30	29	40	10	10	10	10	11111	15.0	0 15	13.	5 15	5 30	20	20	20	20 2			1	1	1	Sec.			32.7	30.05	7.2	72	33.45	74.31818 65.79545 24.82759 24.82759 76.02273
9	1SV20CV010		26	22	26	35	10	10	10	10	25.5	21.7	5 0	1	0 26.2	5 25	15	19	19 10	2	0 15	2	2 2	2	2 26	5.2	5.2 5.2	5.2 5.2		20.33				10.45455 18.97727 15.86207 15.86207 61.5909
10	1SV20CV011		AB	4	23	19	10	10	10	10	0	3.7	5 0		0 22.	5 9			5	2	0 10	2	2 2	2	2 13	2.6	2.6 2.6	2.6 2.6	4.6	8.35	4.6	4.6	27.1	
11	15V20CV014	Siddartha K R	17	15	8	24	10	10	10	10	16.5	7.5	0 75		0 7.	5 13	10	12	10	10 1	0	0 2	2 3	2	2 9	1.8	1.8 1.8	1.8 1.8	20.3	11.30	11.3	3.8	11.3	46.13636 25.68182 38.96552 13.10345 25.68182
12		Yamuna M	-	-		37	10	10	10	10	20.25		and the second second	KT T	0 28.	5 26	15	12	20	20 2	0 18	2	2 :	2	2 2	5 5	5 5	5 5	27.25	22.00	22	7	35.5	61.93182 50 75.86207 24.13793 80.68182
13	1SV20CV01	Yashwanth Kumar T	20	30	29	-			-	10	29.25	15.0	20 15	1				-		20 2	15				2 2	7 5.4	5.4 5.4	5.4 5.4	36.65	22.40	22.4	7.4	33.65	83.29545 50.90909 77.24138 25.51724 76.4772
14	1SV21CV40	Sowmya v Average	30	30	22.30	39 5 31.00	10	10 0 10.00	10	100300	12 A TANK	15.0		4.23	0 26.2		19	20	201	2012	10 13	1 1	-1											59.20455 36.19318 70.43103 20 51.5340 0.592045 0.361932 0.70431 0.2 0.51534

Course Instructor - HAM bessered

HOD Laberthouse -er HOD Dept. of Civil Engineering SIET, TUMKUR - 6,

Principal Alexand PRINCIPAL SIET. TUMKUR.

Acader	nic Year	:2022-23 (ODD Sem)	Faculty	: Mrs. Radhika T N
Subjec	t	: Design of RC Structural Elements	Semester	:5
Code		: 18CV53		
		Course Outcome	es	
C01	Understan	d the design philosophy and principles.		
CO2	Solve eng	ineering problems of RC elements subject	cted to flexure, s	hear and torsion.
CO3		ate the procedural knowledge in designs nd footings	of RC structural	elements such as slabs,
CO4	Owns prof	fessional and ethical responsibility.		

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

P011 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Sri Shridevi Charitable Trust (R.) SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY (該法)

Sira Road, Tumkur - 572 106, Karnataka, India. SHRIDEVI Phone: 0816 - 2212629 | Principal: 0816 - 2212627, 9686114899 | Telefax: 0816 - 2212628 (Approved by AICTE, New Delhi. Recognised by Govt. of Karnataka and Affiliated to Visvesvaraya Technological University, Belagavi)

Academic Year :2022-23 (ODD Sem)

1

: Mrs. Radhika T N Faculty

	Su	bject: l	Design of	of RC s	structu	ral ele	ments				Subj	ect Coo	le: 18	CV5	3	
					(Course	outco	mes								
C01	Apply	the desi	ign phile	osophi	es and	princi	pals of	the coc	lal pro	visions						
CO2	Analys	e and d	esign of	f the be	eam el	ements	for fle	exure, s	hear ar	nd torsi	on.					
CO3	Analys	e and d	esign of	f the sla	ab and	stairc	ase usi	ng the k	knowle	dge of	codal p	rovisio	ns.			
CO4	Design	Design of the column and footing using the design principals. CO-PO-PSO Mapping														
	<u></u>				CO	-PO-P	SO M	apping								
СО						P	Os							PSOs	s	
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
C01	2	1	1					3				1	2			
CO2	3	3	3					3				2	2			
CO3	3	2	3			Ng		3				2	2			
CO4	3	2	3					3				2	2			
Average	2.75	2	2.5					3				1.75	2			

					CO-]	PO-PS	O Att	ainment	t						
СО						PO	Os	X						PSOs	1
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	1.07	0.54	0.54					1.61				0.54			
CO2	1.67	1.67	1.67					1.67				1.12			
CO3	1.67	1.12	1.67					1.67				1.12			
CO4	1.87	1.25	1.87					1.87				1.25			
Average	1.6	1.1	1.4					1.7				1.0			

Radhika Course Instructor

HOD

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

restiguez PRINCIPAL BATTINONEXIPAL

Academic Year	:2022-23 (EVEN Sem)	Faculty : Dr. G MaheshKumar	AL
Subject	: Basic Geotechnical Engineering	Semester : 5	
Code	: 18CV54		

	Course Outcomes
C01 `	Ability to plan and execute geotechnical site investigation program for different civil engineering projects.
CO2	Understanding of stress distribution and resulting settlement beneath the loaded footings on sand and clayey soils.
CO3	Ability to estimate factor of safety against failure of slopes and to compute lateral pressure distribution behind earth retaining structures.
CO4	Ability to determine bearing capacity of soil and achieve proficiency in proportioning shallow isolated and combined footings for uniform bearing pressure.
C05	Capable of estimating load carrying capacity of single and group of piles.

PROGRAM OUTCOMES

P01 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

P05 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

				CC)-PO Ma	pping							
						POs							
COS	1	2	3	4	5	6	7	8	9	10	11	12	
C01	3	3	3	3	1	2	2	3	3	2	2	- 3	2.5
CO2	3	3	3	2	1	3	2	3	3	3	3	3	2.67
CO3	3	3	3	2	1	3	2	3	3	3	3	3	2.67
CO4	3	3	3	3	3	3	2	3	2	2	2	3	2.67
CO5	3	3	3	3	3	3	2	3	2	2	2	3	2.67
Average	3	3	3	2.6	1.8	2.8	2	3	2.6	2.4	2.4	3	2.63
						OVE	RALL	MAPI	PING (FSU	BJECT	= 2.63	

					CO-I	PO AT	TAIN	MENT							
	POs														
COS	% COS	1	2	3	4	5	6	7	8	9	10	11	12	3 67	
CO1	56	1.7	1.68	1.7	1.7	0.56	1.12	1.1	1.7	1.68	1.12	1.117	1.68	1.4	
CO2	45	1.4	1.36	1.4	0.9	0.45	1.36	0.9	1.4	1.36	1.36	1.36	1.36	1.21	
CO3	55	1.7	1.66	1.7	1.1	0.55	1.66	1.1	1.7	1.66	1.66	1.663	1.66	1.48	
CO4	63	1.9	1.89	1.9	1.9	1.89	1.89	1.3	1.9	1.26	1.26	1.26	1.89	1.68	
CO5	48	1.4	1.45	1.4	1.4	1.45	1.45	1.0	1.4	0.97	0.97	0.966	1.45	1.29	
Average		1.61	1.61	1.61	1.4	0.98	1.5	1.07	1.61	1.385	1.27	1.273	1.61	1.41	
									T	TNTAT	ATT	AINM	ENT	1.41	

Course Instructor

HOD HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

Principal SI

1) Supervised 51: 29

	ACAD	EMIC 2	022-23 0	DDD							BGE	18CV5	54																						
SEM: V Civil		IA TES	Т1		IA TEST	2		IAT	TEST 3																44	29	29	29	29						
USN	CO1	CO2	TOTAL	CO1	CO3	TOTAL	CO4	COS	TOTA	AVE(30)	CO1	CO2	CO3	CO4	COS	Asnm	CIE	CO1	CO2	CO3	CO4	COS	SEE	G TOT		CO2	CO3	CO4		CO1					
1SV20CV001	10	8	18	13	11	24	15	12	27	23	2	2	2	2	1	9	32	8	8	7	7	7	37	69	33	18	20	24	1.35		CO2	CO3		CO5	
1SV20CV002	3	3	6	8	6	14	4	2	6	10	2	2	1	2	2	9	19	5	5	5	4	4	23	42	10	10	12	10	20	75	62	69	83	69	
1SV20CV003	6	5	11	10	9	19	7	7	14	15	2	2	2	1	2	9	24	6	6	6	4	9	31	55	24	12	17	10	0	41	34	41	34	28	
1SV20CV005	6	3	9	11	10	21	15	8	23	18	2	2	2	2	2	10	28	5	8	5	6	5	20	57	24	13	17	12	18	55	45	59	41	62	
1SV20CV006	4	4	8	10	9	19	12	5	17	15	2	2	2	2	2	10	25	5	4	8	2	2	23	and the second	24	15	1/	23	15	55	45	59	79	52	
1SV20CV007	6	5	11	11	10	21	10	3	13	15	2	2	2	1	1	8	23	5	5	5	2	2	22	47	21	10	19	1/	9	48	34	66	59	31	
15V20CV008	10	7	17	10	8	18	15	12	27	21	2	2	2	2	2	10	31	0	0	0	0	5	21	44	24	12	1/	14	/	55	41	59	48	24	
1SV20CV009	10	9	19	15	14	29	15	14	29	26	2	2	2	2	2	10	36	10	9	0	0	0	41	12	30	18	18	25	22	68	62	62	86	76	
1SV20CV010	10	7	17	12	11	23	15	9	24	21	2	2	2	2	2	10	31	10	9	3	0	8	44	80	37	20	25	25	24	84	69	86	86	83	
1SV20CV011	10	7	17	3	1	4	7	2	0	10	2	-	1	2	2	10		•	0		1	0	36	67	32	17	20	24	17	73	59	69	83	59	
1SV20CV014	3	2	5	6	6	12	12	2	15	11	2	2	-	2	2	9	19	1	0	1	0	0	2	21	16	9	3	9	4	36	31	10	31	14	
1SV20CV015	6	-	10	0	0	10	15	14	29	10	2	2	2	2	2	10	21	3	2	2	2	3	12	33	14	6	10	16	8	32	21	34	55	28	
15V21CV400	0	8	17	11	11	10		14		19	2	2	2	2	2	10	29	5	8	5	6	5	29	58	22	14	16	23	21	50	48	55	79	72	
1SV19CV006	9	-		11	11	22	15	11	26	22	2	2	2	1	2	9	31	8	7	7	7	6	35	66	30	17	20	23	19	68	59	69	79	66	
	1 00	5	11	10	9	19	8	2	10	13	2	1	1	1	1	6	19	1	1	1	1	1	5	24	19	7	11	10	4	43	24	38	34	14	
TOTAL	99	77	176	139	124	263	165	104	269	239	28	27	25	24	25	129	368	78	80	76	66	67	367	735	344	184	225	255	196	782	634	776	879	676	
Total students	Print Star	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	
Average	7.071	5.5	12.571	9.929	8.86	18.786	11.8	7.43	19.2	17.071	2	1.93	1.79	1.71	1.7857	9.21	26.3	5.57	5.71	5.43	4.71	. 4.79	26.2	52.5	25	13	16	18	14	56	45	55	63	48	
																																		ALC: NOTE: N	

and the second second	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12		1.17	Ave%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	1
C01	3	3	3	3	1	2	2	3	3	2	2	3	2.5	C01	56	1.7	1.68	1.7	1.7	0.56	1.12	1.1	1.7	1.68	1 12	1.117	1 68	14
CO2	3	3	3	2	1	3	2	3	3	3	3	3	2.67	CO2	45	1.4	1.36			0.45	2.0.01				1.36		1.36	-
CO3	3	3	3	2	1	3	2	3	3	3	3	3	2.67	C03	55	1.7	1.66		1	0.55	ALC: NO.	Carlo Carlos and	and the second		1.000	1.663	- AND AND AND AND	ALC: NO ALC: NO A
CO4	3	3	3	3	3	3	2	3	2	2	2	3	2.67	CO4	63	1.9	1.89	1.9		1.89						1.26	1 1 1 1 1 1 1 1 1 1 1	Terra de
C05	3	3	3	3	3	3	2	3	2	2	2	3	2.67	C05	48	1.4	1.45	1.4	1.4	1.45	1.45	1				0.966		
	3	3	3	2.6	1.8	2.8	2	3	2.6	2.4	2.4	3	2.63	Av	erage	1.61	1.61	1.61	1.4	0.98	1.5	1.07			and the second se	1.273		

abestagues Course Instructor

HOD HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

Principal eller PRINCIPAL SIET. TUMKUR.

Sri Shridevi Charitable Trust (R.) SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY Sira Road, Tumkur - 572 106, Karnataka, India. SHRIDEVI Phone: 0816 - 2212629 | Principal: 0816 - 2212627, 9686114899 | Telefax: 0816 - 2212628 Email: Info@shrideviengIncering.org, principal@shrideviengIncering.org | Website: www.shrideviengIncering.org (Approved by AICTE, New Delhi, Recognised by Govt, of Karnataka and Affiliated to Visvesvaraya Technological University, Belagavi)

Subject: N	MUNI	CIPAL	WAST	FEWA	TER E	NGIN	EERIN	G		Subje	ect Co	de:18C	V55		
							rse Ou								
C01	Selec	t the ap	opropri	ate sew	ver app	urtena	nces ar	nd mate	erials ir	n sewer	netwo	rk.			
CO2	Desig	gn the s	sewers	networ	k and ı	underst	tand the	e self-p	ourifica	tion pr	ocess i	n flow	ing wa	ter.	
CO3	Desig	gn the v	varies p	hysic-	chemi	cal trea	atment	units							
CO4	Desig	gn the v	arious	biolog	ical tre	atmen	t units								
C05	Desig	gn vario	ous AC	Ps and	l low c	ost trea	atment	units.							•
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os				Sec. 1			PSOs	
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2				2	2	2				1			
CO2	2	2				2	2	2				1			
CO3	2	2				2	2	2				1			
CO4	2	2				2	2	2				1			
C05	2	2				2	2	2				1			
Average	2	2				2	2	2				1			

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	55.52	1.11	1.11	0	0	0	1.11	1.11	1.11	0	0	0	0.55
CO2	66.75	1.33	1.33	0	0	0	1.33	1.33	1.33	0	0	0	0.66
C03	67.98	1.36	1.36	0	0	0	1.36	1.36	1.36	0	0	0	0.68
CO4	61.58	1.23	1.23	0	0	0	1.23	1.23	1.23	0	0	0	0.61
CO5	62.81	1.25	1.25	0	0	0	1.25	1.25	1.25	0	0	0	0.62
AVERAGE	62.928	1.256	1.256	0	0	0	1.256	1.256	1.256	0	0	0	0.624
					1 1 2 1 2			FIN	IAL AT	TAINN	AENT I	LEVEL	1.15

I ISV19CV006 Avind Sharms Kachingtaban 3 9 9 18 11 2 2 2 2 2 2 2 2 2 2 2 2 2 1 11 13 14 0		NO	Name of the Student	- inter	100	all wear is	unes	A2			A3	1		ASS	IGNM	ENT		40		C	E MA	DVC				Contra de	-										1.51.000	
101205/V0109 Sangana DM 30 30 15 15 30 15 15 30 15 15 30 12 12 12 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 11 11 11 11 11 11 11 11 11 11 11 11 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13	18V20CV 18V20CV 18V20CV 18V20CV 18V20CV 18V20CV 18V20CV 18V20CV	2V001 2V002 2V003 2V005 2V005 2V006 2V007 2V008	Adarsha Sing Okram Akash T R Dipendra Kumar Pandit Lakshmi G V Mahalakshmi B Pankaj Varma Pramia S	3 29 0 12 28 0 18	3 29 0 12 28 0 18	9 14 12 9 15 12 11	9 15 12 10 14 12 12	18 29 24 19 29 24 23	1 1 1 7 7 9 6	1 12 4 14 2 11 7 8 9 7	23 28 23 14 15 18 13	IA CC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	01 CC 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2	03 CC 2 2 2 2 2 2 2 2 2 2 2 2 2	04 COS 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AI 10 10 10 10 10 10 10	25 39 26 25 34 24 28	5 31 2 14 30 2	2 11 16 14 11 17 17 14	3 11 17 14 12 16 14	4 13 16 14 9 9 11	14 16 13 2 9 4 10 5 11 7	0 0 7.2 7.2 2.4 2.4 4.2 4.2 5.8 5.8 7.8 7.8	0 7.2 2.4 2 4.2 4 5.8 5 7.8 7	0 0 7.2 7.2 2.4 2.4 1.2 4.2 5.8 5.8 7.8 7.8	5 SI 0 2 36 1 2 2 2 2 2 9 39	i coi	5 38.2 4.4 18.2 35.8 9.8	02 (11 23.2 16.4 15.2 22.8 21.8	203 11 24.2 16.4 16.2 21.8	CO4 1 23. 16. 13. 14.	1 23. 15. 13. 15.	11. 86. 10. 41.: 81.:	CO2=29 6 37.93 2 80.00 0 56.55 5 52.41 5 78.62	CO3=29 37.93 83.45 56.55 55.86 75.17	CO4=29 44.83 80.00 56.55 45.52 51.03	4 8 5 4 5
Comst Instructor	18V20CV0 18V20CV0 18V20CV0 18V20CV0	V010 V011 V014 V015 V400	Shwetha. P Siddartha K R Yamuna M Yashwanth Kumar T Sowmya v	26 0 17 19 29	26 0 17 19 29	15 10 11 12 14 13	15 11 12 12 14 13	30 21 23 24 28 26	15 10 11 9 9	15 11 12 9 10 15	30 21 23 18 19 29	2 2 2 2 2 2 2 2 2 3 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 10 10 10 10 10 2 10	40 33 25 30 32 38 31.1 5	32 32 28 2 19 21 31 7 19.2	15 17 12 13 14 16 15 2 14	16 17 13 14 14 16 15 15	17 1 17 1 12 1 13 1 11 1 11 1 16 1	16 7 17 7 13 4 1 4 2 6 7 4	7.6 7.6 7.8 7.8 4.6 4.6 4.2 4.2 4.8 4.8 6 6 2 4.2	7.6 7 7.8 7 4.6 4 4.2 4 4.8 4 6 6 4.2 4	.6 7.6 .8 7.8 .6 4.6 .2 4.2 .8 4.8 .6 6 .2 4.2 .8 4.8 .6 6 .2 4.2	38 39 23 21 24 30 21		39.6 39.8 32.6 6.2 3.8 27 5.2	22.6 24.8 16.6 17.2 18.8 22 19.2	23.6 24.8 17.6 18.2 18.8 22 19.2	24.6 24.8 16.6 17.2 15.8 17 20.2	15.4 23.6 24.8 17.6 18.2 15.8 18 21.2	60.0 90.4 90.4 74.0 14.0 54.0 61.3 80.0	0 66.90 77.93 85.52 57.24 59.31 64.83 75.86 66.21	70.34 81.38 85.52 60.69 62.76 64.83 75.86 66.21	49.66 84.83 85.52 57.24 59.31 54.48 58.62 69.66	64 53 81 85 60 62 54 62 73 62

and the state of the	Course Instructor : Prakash	1 J
Subject:	HIGHWAY ENGINEERING	SubjectCode:18CV56
	CourseOutcomes	
CO1	Acquire the capability of proposing a new alignment or re-alignment of necessaryfield investigation for generation of required data.	
CO2	Evaluate the engineering properties of the materials and suggest the suipavement construction.	tability of the same for
CO3	Design road geometrics, structural components of pavement and draina	ige.
CO4	Evaluate the highway economics by few select methods and also will h varioushighway financing concepts.	ave a basic knowledge of

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Sri Shridevi Charitable Trust (R.) SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY Sira Road, Tumkur - 572 106, Karnataka, India. SHRIDEVI Phone: 0816 - 2212629 | Principal: 0816 - 2212627, 9686114899 | Telefax: 0816 - 2212628 Email: Info@shrideviengineering.org. principal@shrideviengineering.org | Website: www.shrideviengineering.org (Approved by AICTE, New Delhi. Recognised by Govt. of Karnataka and Affiliated to Visvesvaraya Technological University, Belagavi)

Subject: I	HIGHW	VAY E	ENGIN	EERIN	IG					Subje	ectCod	le:18C	V56		
				2301			rse Ou								
C01					proposi						ent of e	existing	g roads	, condu	uct
CO2			e engine onstruc		propert	ies of	the ma	terials	and su	ggest th	ne suita	bility c	of the s	same fo	or
CO3					structura										
CO4			-		nomics g conce		w selec	et meth	iods an	d also v	will har	ve a ba	sic kno	owledg	e of
					С	O-PC)-PSO	Mapp	ing						
COs		100	- 10	£	a second and	P	Os							PSOs	
CUS	1	2	3	4	5	6	7	. 8	9	10	11	12	1	2	3
C01	3	2					1	, 1				1			
CO2	3	2		00034	diam.	1	A 6 65.	1	12.54	105.07		1			
CO3	3	2	Selection and the selection of the selec				1	1	1977 6	1. A.M.		1			
CO4	2	2				1	1	1				1	na sa Intinte	in Sites	
Average	2.75	2				0.25	0.75	1				1			
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				0	VERAL	L MAR	PING	OF SUE	BJECT =	=0.73	10.000				

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	57.41	1.72	1.14	0	0	0	0	0.57	0.57	0	0	0	0.57
CO2	61.71	1.85	1.22	0	0	0	0.61	0	0.61	0	0	0	0.61
CO3	60.38	1.81	1.2	0	0	0	0	0.6	0.6	0	0	0	0.6
CO4	68.53	1.37	1.37	0	0	0	0.68	0.68	0.68	0	-0	0	0.68
AVERAGE	62.01	1.69	1.23	0.00	0.00	0.00	0.65	0.62	0.62	0.00	0.00	0.00	0.62
								FIN	ALAT	TAINN	AENT L	EVEL	0.94

Sub Code: 18CV56 HIGHWAY ENGNINNERING

PRAKASH J

V TH SEM

	4.2000	Constant and the second second	I	[A1	a farma	IA2		L	A3	24	AS	SIGNM	ENT	1	40 MAR		CIE	Marks		k. 14	SIE MA	ARKS		60 MARKS	1	TOTAL	COS MAR	KS		COS PERCI	ENTAGE	
SL No.	USN NO	Name of the Student	CO1- 30	TOT	CO2- 15	C03	- TOT AL	CO4- 30	TOT	C01- 2	C02-2	C03-2	C04-2	TOTA L	CIE	C01	CO2	C03	C04	CO1	C02	C03	C04	SIE	C01	C02	C03	C04	CO1=47.5	CO2=32.5 C	03=32.5	CO4=47.
1	1SV19CV006	Arvind Sharma Kakchingtabam	19	19	7	8	15	14	14	2.5	2.5	2.5	2.5	10	26	21.5	9.5	10.5	16.5	3.5	3.5	3.5	3.5	14	a state of the second second	The second second	13	14 20		40.00	43.08	42.11
2	1SV20CV001	Adarsha Sing Okram	25	25	15	15	30	30	30	2.5	2.5	2.5	2.5	10	38.33	27.5	17.5	17.5	32.5	10.5	10.5	10.5	10.5	42	a brack the second state	the second s	28	28 4	A STATE OF THE OWNER OF THE	86.15	86.15	90.5
3	1SV20CV002	Akash T R	0	0	10	8	18	8	8	2.5	2.5	2.5	2.5	10	18.67	2.5	12.5	10.5	10.5	0.25	0.25	0.25	0.25	1	2.			75 10.7		39.23	33.08	22.63
4	1SV20CV003	Dipendra Kumar Pandit	10	10	3	3	6	18	18	2.5	2.5	2.5	2.5	10	21.33	12.5	5.5	5.5	20.5	9.5	9.5	9.5	9.5	38	Contraction of the	The second s	15	15 3	46.32	46.15	46.15	63.10
5	1SV20CV005	Lakshmi G V	23	23	15	14	29	29	29	2.5	2.5	2.5	2.5	10	37	25.5	17.5	16.5	31.5	9.5	9.5	9.5	9.5	38	1000	35	27	26 4		83.08	80.00	86.3
6	1SV20CV006	Mahalakshmi B	0	0	15	12	27	17	17	2.5	2.5	2.5	2.5	10	24.67	2.5	17.5	14.5	19.5	6.5	6.5	6.5	6.5	26	The second	9	24	21 2	6 18.95	73.85	64.62	54.74
7	1SV20CV007	Pankaj Varma	20	20	10	10	20	23	23	2.5	2.5	2.5	2.5	10	31	22.5	12.5	12.5	25.5	6	6	6	6	24	28	3.5 18	.5 18			56.92	56.92	66.32
8	1SV20CV008	Pramila S	28	28	14	14	28	30	30	2.5	2.5	2.5	2.5	10	38.67	30.5	16.5	16.5	32.5	12.75	12.75	12.75	12.75	51	43.	25 29.3	25 29.	25 45.2			90.00	95.2
9	1SV20CV009	Sanjana D M	30	30	15	14	29	30	30	2.5	2.5	2.5	2.5	10	39.67	32.5	17.5	16.5	32.5	12.25	12.25	12.25	12.25	49	44.	75 29.	75 28.				88.46	94.2
10	1SV20CV010	Shwetha, P	24	24	10	10	20	24	24	25	25	25	25	10	32.67	26.5	12.5	12.5	26.5	7.25	7.25	7.25	7.25	29	33.	75 19.	75 19.	75 33.7	5 71.05	60.77	60.77	71.0
11	15V20CV010	Siddartha K R	0	0	0	18	17	21	21	25	25	25	25	10	22.67	2.5	11.5	10.5	23.5	0.5	0.5	0.5	0.5	2	a shall	3	12	11 2	4 6.32	36.92	33.85	50.5
12	15V20CV014	Yamuna M	20	20	0	0	0	27	27	25	25	2.5	25	10	25 67	22.5	2.5	2.5	29.5	2.75	2.75	2.75	2.75	11	25.	25 5.	25 5.	25 32.2	5 53.16	16.15	16.15	67.8
13	15V20CV014	Yashwanth Kumar T	20	20	14	14	28	26	26	25	25	25	25	10	36 67	28.5	16.5	16.5	28.5	3.75	3.75	3.75	3.75	15	32.	25 20.	25 20.	25 32.2	5 67.89	62.31	62.31	67.8
13	1SV20CV013		20	20	14	15	20	20	20	2.5	2.5	25	25	10	38 33	29.5	165	175	31.5	9.75	9.75	9.75	9.75	39	39.	25 26.	25 27.	25 41.2	5 82.63	80.77	83.85	86.84
14	15v21CV400	Sowmya v AVERAGE	18.00	0 18.0	0 10.79	9 10.3	6 21.14	23.2	23.29	2.50	2.50	2.50	2.5) 10.0	0 30.8	1 20.50	0 13.29	12.86	25.79	6.7	6.77	6.77	6.77	27.07	27.	27 20.	05 19.	63 32.5	5 57.41	61.70	60.38	68.53

11119		1200	6	Second S	CO-P	O-PS) Map	ping		A MARINE		
	Real Contract			dala la		Sec. 1	POs				To seal.	472 -4
COS	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	0	0	0	0	1	1	0	0	0	1
CO2	3	2	0	0	0	1	0	1	0	0	0	1
CO3	3	2	0	0	0	0	1	1	0	0	0	1
CO4	2	2	0	0	0	1	1	1	0	0	0	1
Aver	2.75	2	0	0	0	1	1	1	0	0	0	1
	1012	1.12.10	26320.		Si Ra/	OV	ERAL	L MAI	PPING	OF SUI	BJECT	1.43

		-				0-	PO ATTA POs	INNENT		1.10	12012111	1 Bab Con	1151163	1925
COS	% COS	1	2	3	4	5	6	7	8	9	10	11	12	
C01	57.41	1.72	1.14	0	0	0	0	0.57	0.57	0	0	0	0.57	0.91
CO2	61.71	1.85	1.22	0	0	0	0.61	0	0.61	0	0	0	0.61	0.98
C03	60.38	1.81	1.2	0	0	0	0	0.6	0.6	0	0	0	0.6	0.96
C04	68.53	1.37	1.37	0	0	0	0.68	0.68	0.68	0	0	0	0.68	0.91
Average	62.01	1.69	1.23	0.00	0.00	0.00	0.65	0.62	0.62	0.00	0.00	0.00	0.62	0.90
						FINIAL A	ATTAINM	ENT		2		10		0.94
-	i	or	he	e	Age	uer	-			S				

HOD

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

Academic	Year :2022-23 (ODD Sem)	Faculty	: Mrs. Radhika T N
Subject	: Quantity Surveying and Con Management	tract Semester	:7
Code	:18CV71		
CO1 T	Course O aking out quantities and work out the cost or various civil engineering works.		tract for the estimated cost
CO2 P	repare detailed and abstract estimates for upply and sanitary works.	various road works, stru	ictural works and water

CO3 Prepare the specifications and analyze the rates for various items of work.

CO4 Assess contract and tender documents for various construction works.

PROGRAM OUTCOMES

PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

P05 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

Sri Shridevi Charitable Trust (R.) SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

Sira Road, Tumkur - 572 106, Karnataka, India. SHRIDEVI Phone: 0816 - 2212629 | Principal: 0816 - 2212627. 9686114899 | Telefax: 0816 - 2212528 (Approved by AICTE. New Delhi. Recognised by Govt of Karnataka and Affiliated to Visvesvaraya Technological University, Belagavi)

Academic Year :2022-23 (ODD Sem)

(新作)

Faculty

: Mrs. Radhika T N

S	Subject:	Quantit	y Surve	ying ar	nd Cor	ntract N	lanage	ement			Subj	ect Cod	le: 18	CV71	
					(Course	outco	mes							
C01	Estimat	te the qu	antities	ofdif	ferent	items o	of worl	k for roa	ds and	buildi	ngs				
CO2	Develo	ps speci	ificatior	for ci	vil eng	gineerin	ng wor	ks and p	repare	rate ar	nalysis				
C03	Interpre	et contra	act docu	iment a	and int	ernatio	nal co	nstructio	on wor	ks.					
CO4	Develo	p valua	tion rep	orts of	buildi	ngs.									
					CO	-PO-P	SO M	apping							
~~~						PO	Os							PSOs	;
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2				1	1	1			2			1	
CO2	3					1		2			2	1		1	
CO3	2	2				1		2			2	1		1	
CO4	2	1   2   3   4   5   6   7   8   9   10   11   12   1   2     3   2   1   1   1   1   2   1   1     3   2   1   1   1   1   2   1   1     2   2   1   1   2   2   1   1   1     2   2   1   1   2   2   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 <t< td=""></t<>													
Average	2.5	2				1	1	1.75			2	1		1	

					CO-I	PO-PS	O Atta	inment	-						
						PC	s							PSOs	;
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	1.9	1.3				0.6	0.6	0.6			1.3				
CO2	2.0					0.7	-	1.3			1.3	0.7			
C03	1.4	1.4				0.7		1.4			1.4	0.7			
CO4	1.4	1.4				0.7		1.4			1.4	0.7			
Average	1.7	1.3				0.7	0.6	1.2			1.3	0.7			

Rodhita. Course Instructor

estapenor ho HOD

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY

## SIRA ROAD, TUMKUR- 572 106.

## DEPARTMENT OF CIVIL ENGINEERING

SUBJECT     DESIGN OF RCC AND STEEL STRUCTURES     SUBJECT CODE     18CV72	SUBJECT	DESIGN OF RCC AND STEEL STRUCTURES	SUBJECT CODE	18CV72
-------------------------------------------------------------------------------	---------	---------------------------------------	--------------	--------

### COURSE OUTCOME

## CO1. Students will acquire the basic knowledge in design of RCC and Steel Structures.

**CO2.** Students will have the ability to follow design procedures as per codal provisions and skills to arrive at structurally safe RC and Steel members.

### **PROGRAM OUTCOMES**

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI	INSTI	TUTE	OF EN	IGIN	EERIN	G & TI	ECHNC	DLOGY	
FACULTY	NAM	E 1	Mr. MA	NOG	NA H I	N						
BRAN	СН		(	CV		A	CADI	EMIC Y	EAR		2022	-23
COURSE	B.I	E	SEM	ESTEI	2				VII			
SUBJECT	I	DESIC	SN OF I	RCC A		FEEL		SUBJE	ст со	DDE	18CV	/72
CO & PO M	APPIN	٩G									1	1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2	3	-	-125-04.5	and the	Intervie	2				1
CO2	2	2	3					2		*		1
AVERAGE	2	2	3				•	2				1
		I was a set of the set of the set		and the second second	The second second	1 and 1 and 1 and 1 and 1 and 1	1	La	Harrison and the state		the second s	1

## CO AND PO ATTAINMENT

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	58.89	1.18	1.18	1.77					1.18				0.59
CO2	58.89	1.18	1.18	1.77					1.18				0.59
AVERAGE	58.89	1.18	1.18	1.77					1.18				0.59
						<b>N</b>		FIN	AL AT	TAINI	MENT I	EVEL	1.18

### **CONCLUSION:**

- I. 60% IS THE EXPECTED ATTAINMENT FOR THE ACADEMIC YEAR 2022-2023.
- II. 58.89% OF ATTAINMENT IS REACHED BY THE STUDENTS.

HAMacapter

PRINCIPAL SIET. TUMKUR.

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

		IAI	LA 2	IA 3	AVGIA	A1	A2	A3	AVGA	CO1+ CO2 30marks	CO1+ CO2	CO1+ CO2	N. Bigen Billion	1	2	3	1 35	2		-	35	10 (CO1+2	2) (CO1+2 10	10	36
USN	STUDENT NAME	и	1916 232.00	The Party	in the second second	N.S. Transferra	10	10	10	4	. 21	5 26	19	5		-	25			30		10	10	10	26
18CV002	Amruta Varshini P Barki	4	26		19	10	10	10	10	0	1		14	0	2		30		J. 2. 175	Store and the second	30	10	10	10	0
/18CV009	Nayana D T	0	19	23	14		10	10	10	23	2		23	30			25		100 324	30		10	10	10	23
/18CV010	Darshan K V	23	23		23	10	10	10	10	23	1		21	30		1	30				38	10	10	10	39
/18CV012	Devika K Patil	23	19		21	10	10	10	10	11	2		21	15		11111111111	30		611 1. 10 10 - 10	40	10000	10	10	10	21
18CV020	Kavya B K	11	23		-	10	10	10	10	19	2		24					35	11202		35	10	10	10	30
18CV023	Nagalakshmi	19	23		24	10	10	10	10	26	2		26	35			30		C. NOWNER	30		10	10	10	0
18CV031	Shivamurthy S V	26	26		26	10	10	10	10	19	2		21	25		1000	30		Contraction of the second	30		10	10	10	2
/18CV033	Srinivas J	19	23	-	21	10	10	10	10	8	2		18	10		-		35			30	10	10		0
18CV035	Teja KG	8	23		18	10	10	10	10	19	2		23	25		-	30	1000		35		10	10	the second s	27
/18CV037	Vitthal Rudrappa Hanamannavar	19	26			10	10	10	10	0	2		16		1	1	33	20.810/310	1000	15	Children and All	10	10		21
/19CV001	Aliya Tabassum	0	a second s		16	10	10	10	10	0	1000	15 11	12	0.00 m		and the second		-	1000			10	10		1
/19CV002	Amulya P	0		-	12	10	10	10	10	0	Se Rolling	0 0	0			-	39		100000	35		10	10		30
/19CV003	Anil B Koli	0	C		0	10	10	10	10	19	1.1.1.1.1.1	29 26	25	25		-	30		100000	20		10			- 0
V19CV004	Anithalakshmi	19			25		10	10	10	15	-	23 15	18	20		-	25		1	61.11.1	25	10			29
V19CV005	Appuyadav E	15			18	10	10	10	10	0	1	19 19	13	2.15.51		-	20			20		10			- 0
/19CV007	Avinash Naik S	0	19		13	10	10	10	10	0	A 1 1 1 1 1	15 15	10			-	20		0.00	30	10- 740 B	10	10		11
/19CV008	Dileep B O	0	1		10	10	10	10	10	23	61 11/122	0 23	15	30		-	-		1000	A. C. 200.00	40	10	10		29
/19CV009	Govidaraju N	23			15	10	10	10	10	29	and provide	30 30	30	38		-	-	3	5		35	10	10		25
V19CV010	Harish Kumar B	29		-	30	10	10	10	10	26	10 10 10 10 10 10 10 10 10 10 10 10 10 1	26 26	26	35		-	-	-			38	10	10		51
V19CV012	Kiran Kumar K S	26			26	10	10	10	10	29		30 29	29	34	-	-	41	1			25	10	10	10	39
V19CV013	Lakshmi K H	29	-	0 29	29	10		10	10	15	and manager	11 19	15	20		-	34	-	1	Contractor	35	10	) 10		30
V19CV014	Lekhana K S	1		-	15	10	10	10	10	11	3.5.	29 26	22	1	-		3	3	0		20	10	) 10	10	21
V19CV015	Manoranjan T H	1			22	10	10	10	10	15		23 15	18	20		1 martin	-	3	-		35	10	) 10	10	36
V19CV016	Monisha.B.P	1	5 2	3 15	18	10	10	10	10	23	1	26 26	25	3			-		5	30	1	10	) 10	) 10	36
V19CV017	Nandan.C.R	2		26 26	25	10	10	10	10	15	10000	23 23	20	2		-	3	2	0		35	10	) 10	) 10	21
V19CV018	Praveenkumar	1		23 23	20	10	10	10	10	23		15 26	21	3	-	1.	3			30		10	0 10	) 10	27
V19CV019	Pavan Kumar G	2		15 26	21	10	10	10	10	8	7.1	23 23	18	1		-	2		3 1 1 1 1 1 1 1 1		33	10	0 10	0 10	30
V19CV020	Praveen G.S			23 23	18	10	10	10	10	26	200	19 25	23	3	15		2		0	20		10	0 10	0 10	21
V19CV020	Rakesh Gowda T J	2		19 25	23	10	10		10	0		23 15	13		-	-	-			-	5	10	0 10	0 10	0
V19CV024	Shivanand Helawar		-	23 15	13	10	10		10	8		15 4	9	1	10	-	2	0	-	20		1	0 10	0 10	21
V19CV025	Shivapadma Basanal	12/12/13	-	15 4	9	10	10		10	2		15 15	11	1.2.2.	2		1.1		-	30		1	0 10		9
V19CV025	Sudeep R	1.1.1.1.1	-	15 15	11	10	10		10	0	1	23 23	15	1. 3. 11		-	1		-	20		1	0 10		
V19CV028	Surva M N		0 :	23 23	15	10		_		19		26 15	20	1		-	1		-	2		1	0 10	0 10	
V19CV028	Sushmitha R	1		26 15	20	10	10			29		23 15	22		38	-		80	-	-	38	1	0 1	0 10	
V19CV029	Tarun D Hotakar	1	29	23 15		10				30		29 29	29		40	1			-	-	20	1	0 1	0 10	
V19CV030	Thriveni S	1	30	29 29		10				0		15 15	10					20	20	-	20			0 10	
V19CV031	Kushal R	1.1.1	0	15 15	10	10				0		15 15	10	2125 3					20		13		-	0 10	2
	Gagana N		0	15 15	10	10		_				0 10	7	1	13	1	10 100		-	-	35			0 10	30
V20CV400	Madhu N B		10	0 10	7	10				10		29 26	25		25	11 11 11	and the second second	39		3				0 10	10
V20CV401	Rajeshwari Madiwalar		19	29 26	25	10	10			19		23 23	19	1000	15			30		3	9				-
V20CV402 V20CV403	Rajeshwari Madiwalar Rakesh L P			23 23	19	10	10	10	10	11		23 23		1208-15	2 1 1 1 1 1 1 1		St Charles								

-MAHAacoupul Course Instructor

1 PRINCIPAL SIET. TUMKUR. hand 2 e Hober Juna 3 tal

0.59 0.59 1.18 1.77

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

Sri Shridevi Charitable Trust (R.)



Sri Shridevi Charitable Trust (R.) SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY Sira Road, Tumkur - 572 106, Karnataka, India. SHRIDEVI Phone: 0816 - 2212629 | Principal: 0816 - 2212627, 9686114899 | Telefax: 0816 - 2212628 Phone: 0816 - 2212629 | Principal@shridevlengineering.org | Website: www.shrideviengineering.org (Approved by AICTE, New Delhi. Recognised by Govt. of Karnataka and Affiliated to Visvesvaraya Technological University. Belagavi)

Subject:	AIR PO	LLUT	TON A	ND C	ONTR	OL					Subj	ectCod	e:18C	V732	
				1			seOut								
C01		ify the		or sou	rces o	f air	polluti	on an	d unc	lerstand	their	effect	s on	health	and
CO2	Evalua	te the	dispers	sion of	air pol	lutants	in the	atmosj	ohere a	and to de	evelop	air qua	lity m	odels.	
C03	Ascei	tain ar	nd eval	uate sa	mpling	g techn	iques f	or atm	ospher	ic and s	tack po	ollutant	S.		
CO4	Choo	se and	design	contro	ol techr	niques	for par	ticulate	e and g	aseous	emissi	ons.			
							CO-PC								
	1						OMap	ping	A sales					200	
Cos						Р	05							PSO s	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	1				2	2	2		1		1			
CO2	2	1				2	2	2		1		1			
CO3	2	1				2	2	2		1		1			
CO4	2	1				2	2	2		1		1			
Average	2	1			- 4	2	2	2		1		1			

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
C01	52.25	1.57	1.05	0	0	0	0	0.52	0.52	0	0	0.52	0.52
CO2	59.77	1.79	1.2	0	0	0	0.6	0	0.6	0	0	0.6	0.6
CO3	65.44	1.96	1.31	0	0	0	0	0.65	0.65	0	0	0.65	0.65
CO4	64.58	1.29	1.29	0	0	0	0.65	0.65	0.65	0	0	0.65	0.65
AVERAGE	60.51	1.65	1.21	0.00	0.00	0.00	0.31	0.46	0.61	0.00	0.00	0.61	0.61
								FIN	ALAT	TAINN	AENT I	EVEL	1.02

## Sub Code: 18C¹ AIR POLLUTION AND VII TH SEM

NIRANJANI B

L No.	USN NO	Name of the Student	1	A1		IA2			IA3			ASS	GNM	ENT	-		CIE M	ARKS			SIE M	IARKS		60 MARKS	c	OS PERC	ENTAGE	
L NO.	USNINO	Name of the Student	1	тот	CO2	CO	тот	CO3	C04	то	co	CO2	C03	<b>CO</b> 4	тот	CO1	CO2	СОЗ	CO4	CO1	CO2	СОЗ	CO4	SIE	CO1=47.			
2.01.4		A Contraction of the second second	1	AL	C02	3	AL	05	1.365/63	TA	1	(Blain)	-	1. 19	AL	07.5	9.5	19.5	16.5	9.5	9.5	9.	5 9.	5 38	77.89	58.46	61.05	80.00
1.0	1SV18CV002	Amruta Varshini P Barki	25	25	7	7	14	10		-	2.5	2.5	2.5	2.5	10	27.5	9.3	27.5			9.25	9.2	5 9.2	5 3	68.95	73.08	77.37	66.9
2	1SV18CV009	Nayana D T	21	21	12	2 12	24	13		_	2.5	2.5	2.5		10	23.5	14.5	29.5				8.2	_	5 3:	3 22.63	73.08	79.47	79.2
3	1SV18CV010	Darshan K V	0	0	13	8 13	26	14	-	_	_	2.5	2.5		10	2.5	13.5			6			6	6 2	1 55.79	56.92	68.42	72.3
4	1SV18CV012	Devika K Patil	18	18	10	) 10	20	14	15	-	_	2.5	2.5		10	20.5		30.5				9.	5 9.	5 3	8 80.00	76.92	84.21	80.0
5	1SV18CV020	Kavya B K	26	26	13	3 13	26	15	14		2.5	2.5	2.5		10	28.5	15.5						-		9 77.37	70.00	77.37	73.0
6	1SV18CV023	Nagalakshmi	27	27	13	3 13	26	14	14		2.5	2.5	2.5	_	10	29.5	15.5					-	-		8 80.00	80.00	84.21	83.
7	1SV18CV031	Shivamurthy S V	26	26	14	1 14	28	14	1	5 29	2.5	2.5	2.5	_		28.5	16.5						_	0	0 34.74	13.85	32.63	53.
8	1SV18CV033	Srinivas J	14	14	2	2 3	5	10	) 15	5 25	2.5	2.5	2.5	_			4.5	-		States and card of the basis Top	and the state	ALC: NOT SHE	The second second	0 4	74.74	72.31	76.84	75.
9	1SV18CV035	Teja KG	23	23	1	1 12	23	12	2 12	2 24	2.5	2.5	2.5	2.5	10	25.5	13.5	26.	5 14.5			1						11212
	1311001035	Vitthal Rudrappa	23	23		8 8	16	14	1 14	4 28	2.5	2.5	2.5	2.5	10	25.5	10.5	24.	5 16.5	5 (			0	0	0 53.68	32.31	51.58	50.
10	1SV18CV037	Hanamannavar	2.		199								2.5	2.5	10	2.5	9.5	21.	5 14.5	5 7	7 .	7	7	7 2	8 20.00	50.77	60.00	66
11	1SV19CV001	Aliya Tabassum	(		-	7 8	15		-	_		2.5			-		13.5	-			5 6.	5 6.	5 6	.5 2	6 44.21	61.54	75.79	70
12	1SV19CV002	Amulya P	12	2 12	2 1	-			_	-		2.5	2.5				12.5			-		5 2	5 2	.5 1	0 10.53	46.15	48.42	43
13	1SV19CV003	Anil B Koli	(	0 (	0 1	0 10	20		-	9 17		2.5	2.5		-		12		-			9	9	9 3	6 83.16	75.38	81.05	81
14	1SV19CV004	Anithalakshmi	28	8 28	8 1	3 13		-		-		2.5								_		0	0	0	0 47.37	38.46	43.16	47
15	1SV19CV005	Appuyadav E	20	0 20	0 1	0 7	17	-		-	2.5	2.5					14.	-	-		5 8.7	5 8.7	8.	75 3	5 59.47	71.54	78.42	77
16	1SV19CV007	Avinash Naik S	1	7 1	7 1	2 11	23	1	-	_		2.5	-						_		_	_		75 3	46.84	59.23	59.47	68
17	1SV19CV008	Dileep B O	12	2 12	2	9 6	5 15	5 1	-	2 24		2.5							_	_			75 8.	75 3	5 23.68	59.23	78.42	68
18	1SV19CV009	Govidaraju N		0	0	8 11	19	1	-	1 21		2.5							-	-	_	-	_	11 4	4 87.37	75.38	85.26	87
19	1SV19CV010	Harish Kumar B	2	8 2	8 1	1 13	3 24	4 1		5 29		2.5	-	_	-			-	-	-		-	-	0.5 4	2 90.53	80.00	92.63	83
20	1SV19CV012	Kiran Kumar K S	3	0 3	0 1	3 10	5 29	9 1	-	4 29		2.5			-		5 15.	-		_		-		.5	8 86.32	76.92	88.42	80
21	1SV19CV013	Lakshmi K H	2	9 2	9 1	3 15	5 28	8 1	-	4 29		2.5	-	-			-	-	_	-	-		_	75	80.53	80.77	76.32	71
22	1SV19CV014	Lekhana K S	2	6 2	6 1	4 15	5 29	9	9 1	1 20	_	2.5	-					-		_	9	9	9	9	36 70.53	60.00	81.05	78
23	1SV19CV015	Manoranjan T H	2	2 2	2	8 12	2 20	0 1	5 1	4 29	_	2.5	-				-	-	-		-	5 8.	25 8.	25	60.53	48.46	68.95	60
24	1SV19CV016	Monisha.B.P	1	8 1	8	5 10	0 1:	5 1	2 1	1 2.	-	2.	-	-	_	-	_	-	-			-			72.11	71.54	76.32	71
25	1SV19CV017	Nandan.C.R	2	5 2	5 1	4 1:	5 29	9 1	2 1	4 20	-	2.	-	_				-		_		-			69.47	64.62	75.79	76
26	1SV19CV018	Praveenkumar	2	2 2	2 1	10 1	0 2	0 1	5 1	4 2	9 2.5	-	_		_	_	_	-							35 67.89	53.08	65.79	7
27	1SV19CV019	Pavan Kumar G	2	1 2	1	6 1	0 1	6 1	0 1	12 2	2 2.5	_	_	_	_			_		-		_	_		68.95	63.85	64.74	7
28	1SV19CV020	Praveen G.S	2	3 2	3 1	1 1	0 2	1 1	1 1	13 2	4 2.5	_	-	-	-	-	-				_				27 78.42	43.85	80.53	74
29	1SV19CV021	Rakesh Gowda T J	2	8 2	8	5 1	5 2	0 1	4	15 2	9 2.5	2.	_	_	-	_									39 74.21	68.46	76.32	2 8
30	1SV19CV024	Shivanand Helawar	2	3 2	3 1	10	9 1	9 1	15 1	14 2	9 2.5	2.	_	-	_	_	_				-	_		25	1 5.79	48.46	37.37	7 3
31	1SV19CV025	Shivapadma Basanal		0	0 1	13 1	0 2	3	5	10 1	5 2.5	_	_	-	-	-	_					_			25 64.74	33.08	71.05	5 7
32	1SV19CV027	Sudeep R	2	2 2	22	2 1	0 1	2 1	15	14 2	9 2.5	2.	5 2.	-	-	-									11 40.53	31.54	51.05	5 5
33	1SV19CV028	Surva M N	1	4 1	4	5 1	0 1	5	9	13 2	2 2.5	2.	5 2.	-	-	-		_				_			35 84.74	80.77	84.74	4 8
34	15V19CV029	Sushmitha R	_	_	29	15 1	4 2	9	15	15 3	0 2.5	5 2.	5 2.	-	-	-	_				-	-			41 71.05		83.68	8 7
35	15V19CV030	Tarun D Hotakar	2	-	_	10 1	2 2	2	15	10 2	5 2.5	5 2.	5 2.	5 2	_			_							35 82.63			4 8
36	1SV19CV031	Thriveni S			_	11 1	5 2	6	14	15 2	9 2.5	5 2.	5 2.	5 2	-	-	_			_	7	7	7 0		28 20.00			0 5
37	1SV19CV032				0	8 1	-	8	9	8 1	7 2.	5 2.	5 2	5 2	5 1	0 2		_				-	6		24 17.89			-
38	1SV20CV400			0	0	7 1	0 1	7	10	7 1	7 2.	5 2	5 2	5 2	5 1	0 2	-	.5 22			6	6	7.5	-	30 21.0			
39	1SV20CV400	Madhu N B		0	0	6	-	-	13	15 2	7 2.	5 2	5 2	.5 2	.5 1	0 2									33 77.3	and the second second		-
40	1SV20CV401			26 2	26	13 1			14	15 2	9 2.	5 2	5 2	.5 2	.5 1	0 28							_		27 70.0	-		
40	13 4 200 4402	Rajestiwari Maurwalar			24		-			13 2	7 2	5 2	5 2	5 2	-	0 26	.5 13	5 2	9.5 15	5.5 6.	751 6	75 6	.75 6		21	A COLORED OF THE OWNER	6 70.67	The second second

average

Course Instructor

rahestipure. HOD

PRINCIPAL SIFT TUMKUR. Principal

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.



Subject:	URBAN TRANSPORT PLANNING	SubjectCode:18CV745
	CourseOut	comes
CO1	Design, conduct and administer surveys to pro	vide the data required for transportation planning.
CO2	Supervise the process of data collection about transportplanning.	travel behavior and analyze the data for use in
CO3	Develop and calibrate modal split, trip generatidevelopments.	
CO4	Adopt the steps that are necessary to complete	a long-term transportation plan.

## **PROGRAM OUTCOMES**

**PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

**PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

**PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

**PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

**PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

**PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

**PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

**PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

**PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.



Sri Shridevi Charitable Trust (R.) SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY Sira Road, Tumkur - 572 106, Karnataka, India. SHRIDEVI Phone: 0816 - 2212029 | Principal: 0816 - 2212027. 9686114899 | Telefax: 0816 - 2212028 Email: Info@shrideviengineering.org. principal@shrideviengineering.org | Website: www.shrideviengineering.org (Approved by AICTE, New Delhi, Recognised by Govt. of Karnataka and Affiliated to Visvesvaraya Technological University, Belagavi)

Subject:	URBAI	NTR	ANSPO	ORT P	LANN	ING				Subj	ectCo	de:180	CV745		
						Cou	rse Ou	tcome	es	Q 1933					
C01	Desig	gn, cor	nduct a	nd adn	niniste	r survey	ys to pr	ovide	the data	a requir	ed for	transp	ortatio	n plann	ing.
CO2	1		he pro anning		data c	ollectio	n abou	t trave	l behav	ior and	analy	ze the	data for	r use in	
CO3	Devel			orate m	odal sp	olit, trip	genera	ation ra	ates for	specifi	c type	s of la	nd use		
CO4	Adop	t the s	teps th	at are	necessa	ary to c	omplet	e a lon	g-term	transpo	ortatio	n plan.	•.		
				(		CO-PC	D-PSO	Mapp	oing						
COs						Р	Os				199.03			PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	1952	Penn			1	1		100	1	1			
CO2	3	2				1		1			1	. 1			- 2 5
CO3	3	2	lie				1	1			1	1			
CO4	2	2				1	1	1			1	1			
Average	2.75	2				0.25	0.75	1			1	1			

And the	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	52.25	1.57	1.05	0	0	0	0	0.52	0.52	0	0	0.52	0.52
CO2	59.77	1.79	1.2	0	0	0	0.6	0	0.6	0	0	0.6	0.6
CO3	65.44	1.96	1.31	0	0	0	0	0.65	0.65	0	0	0.65	0.65
CO4	64.58	1.29	1.29	0	0	0	0.65	0.65	0.65	0	0	0.65	0.65
AVERAGE	60.51	1.65	1.21	0.00	0.00	0.00	0.31	0.46	0.61	0.00	0.00	0.61	0.61
	•						•	FIN	ALAT	TAINN	1ENT L	EVEL	0.87

Sub Code: 18CV7	URBAN TRANSPORT
-----------------	-----------------

PRAKASH J

VII TH SEM

. No.	USN NO	Name of the Student		IAI		IA2			IA3				SSIGNM	ENT		a son fi	CIE N	ARKS			SIE M	IARKS	60 MAR	ĸs	COS PERC	CENTAG	E
	r alter a start	and and the second	COI	TOTAL	CO2	CO3	TOTAL	CO3	C04	TOTAL	COI	CO2	CO3	C04	TOTAL	CO1 0	CO2	CO3	CO4	C01	CO2	CO3	CO4 SIE	CO1=47.	CO2=32.	CO3=47.	CO4=3
1	1SV18CV002	Amruta Varshini P Barki	1	2 1	2	7 1	17	4		5 0	2	5 2.	5 2.	5 2.5	10	14.5	9.5	16.5	7.5	10.5	10.5	10.5	10.5	42 52.63	61.54	56.84	55.3
2	1SV18CV009	Nayana D T	-	-	-	7	14	10	1	0 20					10	20.5	9.5			9.75	9.75			39 63.68		61.58	68.4
3	1SV18CV010	Darshan K V	and a state of the state	0	0	4 1	5 29	15	1						10	2.5	16.5			2.75	2.75			11 11.05		74.21	50.0
4	1SV18CV012	Devika K Patil	2	2 2	2	0 1	23	14	1		-				10		12.5		14.5	9.25	9.25	9.25		37 71.05		81.58	73.0
5	1SV18CV020	Kavya B K	2			3 1									10	26.5	15.5		14.5	8.75	8.75			35 74.21		76.32	77.
6	1SV18CV023	Nagalakshmi	2			1 1									10	23.5	13.5		14.5	6.5	6.5	6.5		26 63.16		65.26	64.
7	1SV18CV031	Shivamurthy S V	2			0 1								_	10	27.5	12.5			8.25	8.25			33 75.26		75.26	76.
8	1SV18CV033	Srinivas J	2		-	0	-		1						10	28.5	12.5			0.25	0.25	0.25	0.23	0 60.00		28.42	38.
9	1SV18CV035	Teja KG	2			5	11		-						10	28.5	7.5			7.5	7.5	76	76	30 63.16		61.05	
10	1SV18CV037	Vitthal Rudrappa Hanamanna var	1	8 1	1 112 12 12	0	17	10	1	4 24	2	C. C		a transformation	10	20.5	12.5	10000000		0	0	0	0	0	1 States		
11	1SV19CV001	Aliva Tabassum	2	1 2	1	0	0	15	1	5 30	2	c			10			10.0	10.0					43.16		41.05	
12	1SV19CV002	Amulya P	2		-	1 1			1	3 30	2				10	23.5	2.5		17.5		5.25		5.25	21 60.53	-	47.89	70
13	1SV19CV002	Anil B Koli		2 2	2	1 1	14			1 2	-				10	24.5	13.5		6.5		6.5	6.5	6.5	26 65.26		56.84	40
14	1SV19CV004	Anithalakshmi	2		5 1	0 1		10	1	5 30	-				10	2.5	9.5	19.5	13.5		1	1	1	4 7.37		43.16	44
15	1SV19CV005	Appuyadav E	1	-	-		14	15	1	-				-	10	27.5	12.5		17.5		7.5	7.5	7.5	30 73.68		73.68	76
16	13V19CV003	Avinash Naik S	1	3 1	-	7	Contraction and	10	1	0 20	2.		_	-	10	15.5	9.5		12.5		0	0	0	0 32.63		41.05	38
17	1SV19CV007	Dileep B O	-	8	8 1			10	1	0 20	2.			-	10	10.5	13.5		12.5		9.75	9.75	9.75	39 42.63		67.89	68
18	1SV19CV008	Govidaraju N		8	8 1	0 10		10		4 14	2.				10	10.5	12.5		6.5	9	9	9		36 41.05		66.32	47
18	1SV19CV009			9	9 1			13	1	3 26	-				10	11.5	12.5	26.5	15.5		12.5	12.5		50 50.53		82.11	86
20	1SV19CV010	Harish Kumar B	2			-			1	5 30				-	10	27.5	14.5		17.5	9.75	9.75	9.75	2110	39 78.42		82.63	83
	1SV19CV012	Kiran Kumar K S Lakshmi K H	2						1	0 18	-				10	25.5	16.5	20.5	12.5	9.75	9.75	9.75		39 74.21		63.68	68
21			2	6 2	-				1	5 30					10	28.5	17.5		17.5	10.5	10.5	10.5		42 82.11	86.15	88.42	86
22	1SV19CV014	Lekhana K S	1	9 1	9 1				1	0 13	2.	-	_		10	21.5	12.5		12.5	9.75	9.75			39 65.79	68.46	59.47	68
23	1SV19CV015	Manoranjan T H	1	4 1		0 10			10.00	8 18	2.		_		10	16.5	12.5		10.5	5.25	5.25	5.25		21 45.79		58.42	48
24	1SV19CV016	Monisha.B.P	-	0	0 1		17			8 15	2.				10	2.5	12.5		10.5	9.5	9.5	9.5	1.5	38 25.26		54.74	61
25	1SV19CV017	Nandan.C.R	1	-	-		18	10		-		-			10	21.5	12.5	20.5	16.5	8.25	8.25	8.25	8.25	33 62.63	63.85	60.53	76
26	1SV19CV018	Praveenkumar	2		-	8 10	10			5 25					10	22.5	10.5	26.5	17.5	6.5	6.5	6.5	6.5	26 61.05	52.31	69.47	73
27	1SV19CV019	Pavan Kumar G	1	-	-	2 10									10	16.5	4.5	22.5	13.5	9	9	9	9	36 53.68	41.54	66.32	69
28	1SV19CV020	Praveen G.S	1				-	10	-						10	13.5	12.5	24.5	13.5	9	9	9	9	36 47.37	66.15	70.53	69
29	1SV19CV021	Rakesh Gowda T J	1				~ ~	11				-			10	18.5	12.5	24.5	12.5	10.75	10.75	10.75	10.75	43 61.58	71.54	74.21	71
30	1SV19CV024	Shivanand Helawar	1	9 1	9 1			15							10	21.5	12.5	32.5	17.5	10.75	10.75	10.75	10.75	43 67.89	71.54	91.05	86.
31	1SV19CV025	Shivapadma Basanal		0	0 1		17	10							10	2.5	12.5	19.5	13.5	0	. 0	0	0	0 5.26	38.46	41.05	41
32	1SV19CV027	Sudeep R	1			3 10	13	10		9 19		-			10	13.5	5.5		11.5	5.25	5.25	5.25	5.25	21 39.47	33.08	58.42	51
33	1SV19CV028	Surya M N	1. C. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	0	0 1		15	10		8 18					10	2.5	12.5	17.5	10.5	6.5	6.5	6.5	6.5	26 18.95	58.46	50.53	52
34	1SV19CV029	Sushmitha R	2					14							10	28.5	16.5	30.5	17.5	9.75	9.75	9.75	9.75	39 80.53	80.77	84.74	83
35	1SV19CV030	Tarun D Hotakar	1	_	-	-		11							10	19.5	16.5	28.5	13.5	11.75	11.75	11.75	11.75	47 65.79	86.92	84.74	77
36	1SV19CV031	Thriveni S	2	1 2				13							10	23.5	12.5	30.5	15.5	12	12	12	12	48 74.74	75.38	89.47	84
37	1SV19CV032	Kushal R	1	0	0 1	0 14	_	10		1 14		-			10	2.5	12.5	26.5	6.5	7.25	7.25	7.25	7.25	29 20.53	60.77	71.05	42
38	1SV20CV400	Gagana N		0	0	5 (	11	10					2.:	5 2.5	10	2.5	7.5	18.5	14.5	6.75	6.75	6.75	6.75	27 19.47	43.85	53.16	65
39	1SV20CV401	Madhu N B	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	0	D	7 1	14	12	1	3 20	2.	5 2.5	2.	5 2.5	10	2.5	9.5	21.5	10.5	3	3	3	3	12 11.58	38.46	51.58	41
40	1SV20CV402	Rajeshwari Madiwalar	2		1 1	3 13	26	15	1:	5 30	2.	5 2.5	2.:	5 2.5	10	23.5	15.5	30.5	17.5	10.25	10.25	10.25	10.25	41 71.05	79.23	85.79	85.
41	1SV20CV403	Rakesh L P	1	7 1	7 1	0 10	20	14	1	2 26	2	5 25	2	5 2.5	10	19.5	12.5	26.5	14.5	8	8	8	8	32 57.89	63.08	72.63	69.

	11236320	165 BEACH 70	2	M. 28/200	CO-I	PO-PSO N	lapping	IT CALLER	181124		123.0463	A CALL
	Service School		2 . C. S. J.			A REAL PROPERTY	POs .	1012120743	1999	STATISTICS IN	12.16	127.152.26
COS	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	0	0	0	0	1	1	0	0	1	1
CO2	3	2	0	0	0	1	0	1	0	0	1	1
CO3	3	2	0	0	0	0	1	1	0	0	1	1
CO4	2	2	0	0	0	1	1	1	0	0	1	1
Average	2.75	2	0	0	0	1	1	1	0	0	1	1
SSI76767	112020	Station !!	1.2.2.2.1.2.1	State State	1.11.11.11.		4.5.4.6.1	OVERA	LL MAPP	ING OF S	UBJECT	*****

 
 COS
 % COS
 1
 2
 3
 4
 5
 6
 7
 7

 CO1
 52.25
 1.57
 1.05
 0
 0
 0
 0.52
 0.52
 0
 0
 0.52
 0.78

 CO2
 59.77
 1.79
 1.2
 0
 0
 0.66
 0
 0.66
 0
 0.66
 0.99

 CO3
 65.44
 1.96
 1.31
 0
 0
 0
 0.65
 0.65
 0
 0.65
 0.65
 0.98

 CO4
 64.58
 1.29
 1.29
 0
 0
 0.65
 0.65
 0
 0.65
 0.65
 0.98

 CO4
 64.58
 1.29
 1.29
 0
 0
 0.63
 0.65
 0.60
 0.66
 0.66
 0.66
 0.66
 0.66
 0.61
 0.63
 0.65
 0.65
 0.83

 Average
 60.51
 1.65
 1.21
 0.00
 0.00
 0.31
 0.46
 0.61
 0.60
 0.66
 0.61 Cranding

3 4

2

HOD Dept. of Civil Engineering SIET, TUMKUR - 6. HOD

COS % COS 1

al line PRINCIPAL SIET."TUMKUR.

8 9 10 11

12

CO-PO ATTAINMENT POs

6 7

# COs & POs Mapping and Attainment Even Semester 2022-2023



## DEPARTMENT OF CIVIL ENGINEERING

SUBJECT	PUBLIC HEALTH ENGINEERING	SUBJECT CODE	21CV43	
A STATE OF A				

### **COURSE OUTCOME**

**CO 1.** Estimate average and peak water demand for a community.

**CO2.** Evaluate water quality and environmental significance of various parameters and plan suitable treatment system.

**CO3.** Design the different units of water treatment plant.

CO4. Understand and design the various units of wastewater treatment plant.

**CO5.** Acquire capability to conduct experiments and estimate the concentration of different parameters and compare the obtained results with the concerned guidelines and regulations

### **PROGRAM OUTCOMES**

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHRI	DEVI I	NSTIT	UTE C	JF EN	GINE	ERING	d IE					
FACULTY	NAMI	E N	Ir. ABI	HISHE	KAP									
BRANC	CH	H	CI	VIL EERIN	IG	AC	CADE	MIC YI	EAR		2022-2	23		
COURSE	B.F	C	SEM	ESTER	2	4	S	ECTIO	N			1.16		
SUBJECT	PUBLIC HEALTH ENGINEERING SUBJECT CODE 21CV													
CO & PO M	APPIN	NG												
	PO1	PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2			3	2					2	2		
CO2	2	2			2	2					2	2		
C03	2	2			2	3					2	2		
CO4		2			2	2					2	3		
CO5	3				2	2					2	2		
AVERAGE	2	2			3	2					2	2		
AVERAGE	2	2		-	5	STATE OF TAXABLE AND			DDINC	OFSI	BJECT	2.5		

## CO AND PO ATTAINMENT

COANL	PUAL	IAIN	ILITE					DOT	PO8	PO9	PC 0	PO11	PO12
	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	ruo	107			
CO1	49.545	1.0	1.0				1.5	1.0					1.0
CO2	36.279	0.7	0.7				0.7	0.7					0.7
CO3		0.6	0.6				0.6	0.9					0.6
C04	30.487						1.1	1.1					1.1
	54.343	1.6					0.6						0.6
CO5	28.817	0.6	0.6										0.8
AVERAGE		0.9	0.8				0.9			EL OF	THE C	OURSE	0.9
					ł	INAL	ATTAI		T				

18CV43

Andrew Control of

PUBLIC HEALTH ENGINEERING

### ABHISHEK A P

			IAI	IA2			LA	13				A	SSIG	NME	ENT			CIE	MAF	RKS			SIE	MA	RKS		60 MARKS		CO PE	RCENTA	GES	
SL. No.	USN NO	Name of the Student	-	CO2	C01	1000.000	C	CO	CO5	то	C	СО	CO	co	CO	тот	CO1	CO 2	CO 3	CO 4	CO5	C0	CO 2	CO 3	CO 4	CO5	SIE	CO1	CO2	CO3		со
199		the design of the second	1. 1. 1. 1.	002	001	2	0	4		TA	01	2	3	4	2	10	18	2	2	2	2	8	8	8	8	8	40	41.9	16.1	45.5	45.5	45.
1	1SV21CV001	B S YASDON	16	0	111 2018			5.1	11.11		2	2	2	2	2	10	27	27	2	20	2	2	2	2	2	3	11	46.8	46.8	18.2	100.0	22.
2		BHASKARA B	25	25	18			10		28	2	2	2	2	2	10	21	21	2	20	-	-						<b>60.1</b>	50.7	31.8	66.7	77
-		CHANDAN KUMAR	36	30	20			15	9	44	2	2	2	2	2	10	38	32	2	22	11	5	5	5	6	6	27	69.4	59.7	51.0	00.7	
3	1SV21CV003	CHAUDHARY	50	50		14.674		4.100	-		-		10	12	12	10	24	2	2	21	2	6	6	7	7	7	33	36.6	36.4	40.9	66.7	21
4	1SV21CV004	DHARSHAN TJ	22	12	19	32	-	13			2	2	2	2	2	-	31	2	2	22	2	3	3	3	3	2	14	41.5	22.7	22.7	59.5	9
5	1SV21CV005	HARSHITHA C G	29	16	20	_		15		-	2	2	2	2	2	10	51	-	-		-	-						71.0	(1.2	36.4	31.8	3
	10101010007	LALAUMPUIA	36	30	1.10				1		2	2	2	2	2	10	38	32	2	2	2	6	6	6	5	0	29	71.0	61.3	30.4	51.0	1
6	1SV21CV007	CHHAKCHHUAK	50	50	1.11	1		1011		-	-	1.5	1.5	1.5	1.5	0	17.5	1.5	1.5	22	75	7	7	7	7	7	35	29.9	38.6	38.6	67.9	34
7	1SV21CV008	LIANDING RALTE	16	1	20			12	6	38	2	1.5	1.5	1.5	1.5	10	23	2	2	18	9	8	8	8	7	7	38	37.8	45.5	45.5	59.5	38
8	1SV21CV010	SHANI CHAUDHARY	21	16	16	-		12	7	35	2	2	2	2	2	-	33.4	0.4	0.4	18	04	6	6	6	6	6	30	48.0	29.1	29.1	58.1	1
9	1SV21CV011	SHREYAS M	33	9	18		1	10		-	0	0.4	0.4	0.4	0.4	5	22	1	1	17	1	3	3	3	3	3	15	30.5	18.2	18.2	47.6	9
10	1SV21CV014	TEJASWINI K	21	17	16	1	-	11	-	27	1	1	1	1	1	5	41	1	2	22	12	3	3	3	3	4	16	53.7	22.7	22.7	59.5	3
11	1SV21CV015	Y SHILPA	39	31	20	1	-	20	10	50	2	2	2	2	2	10	41	20	2	2	2	6	6	6	5	5	28	75.8	41.9	36.4	31.8	3
12	1SV22CV400	JEEVAN T K	39	18		1 1	-			1	2	2	2	2	2	10		23	2	2	2		Ť	1				64.5	37.1	9.1	9.1	9
13	1SV22CV401	RANJITH V	38	21		1				1.1.1	2	2	2	2	12	10	40	23	2	20	2	5	5	5	4	4	23	46.3	31.8	31.8	57.1	1
14	1SV22CV402	VIMALA T L	31	17	18	1		14		32	2	2	2	2	8 1.	8 8.8	55	11	1.8	20	4.00	5 5.	2 5.2	5.3	5.1	5.23	26.07	49.5	36.3	30.	5 54.	.3
		AVERAGE	28.	7 17.	4 18.	5			1	8 3	6 2	1.1	8 1.	8 1.	ō 1.	0 0.00	1 30.2	, 11	1.0													

Abhigher Course Instructor

IV RD SEM

ahestiquer HOD

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

attar Principal SIET. TUMKUR.

### SIRA ROAD, TUMKUR- 572 106.

#### DEPARTMENT OF CIVIL ENGINEERING

SUBJECT	ANALYSIS OF STRUCTURES	SUBJECT CODE	21CV44	
			and the state of the state	

#### **COURSE OUTCOME**

**CO1.** To determine slope and deflections in beams and trusses.

CO2. To analyse arches and cable structures.

CO3. To analyse different structural systems and interpret data using slope deflection method.

**CO4**. To apply matrix operations in analysing structures.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	DEVI	INSTI	<b>FUTE</b>	OF EN	IGIN	EERING	G & TI	ECHNO	LOGY	
FACULTY	NAM	E N	Ir. MA	NOGN	A H N	[			-			
BRAN	СН		(	CV		A	CADI	EMIC Y	EAR		2022-	23
COURSE	B.F	2	SEM	ESTER	2	MOTEO			IV			
SUBJECT		ANAL	YSIS O	F STR	UCTU	RES		SUBJE	ст со	DDE	21CV	44
CO & PO MAPPING												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3										3
AVERAGE	3	3										3
						OV	ERAJ	LL MAI	PPING	OF SU	BJECT	3

	C0%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	71.30	2.14	2.14	2.14					2.14				2.14
CO2	49.45	1.48	1.48	1.48					1.48				1.48
CO3	61.77	1.85	1.85	1.85					1.85				1.85
CO4	59.15	1.77	1.77	1.77					1.77				1.77
aVERA GE	60.42	1.81	1.81	1.81					1.81				1.81
										Fi	nal attainr	nent level	1.81

	YSIS OF STRUCTURES	1	subject Con	te: 21CV44		and the second	1.1.1.1.	2022-2023			-	101 C	1.1.1.1.1.1.1	10000		All Contraction			-		TOT	AL COS ATT	AINNMEN	T	PERCE	NTAGE OF	TOTAL COS	ATTAINNN	IENT	
DJECT: ANAL	THE OF STRUCTURES				14	2		IA	3	1	1. S.C. 1. M.	ASSIGNM	MENT+QU	ZMARKS			SEE				CO1 39.2			NU-101-101-001			and the second	I State	1285	1215
			LA CO3	CO2	COI	CO3	COI	CO3	CO4 6.7	Avg		CO2	C03	C04		SEE	CO1 12.5	CO2 12.5	CO3 12.5 C		MARKS I	MARKS	MARKS 10.50	MARKS 10.00	CO1 67.86	CO2 30.77	CO3 21.34	CO4 34.25		
LNO	USN	STUDENT NAME	10marks	10marks	10marks	10marks		6.7marks	marks	26	C01	10	10	10		0	0	0	0	0	26.60	10.00	33.45	19.45	79.34	60.00	67.99	66.61		
1	1SV21CV001	B S YAZDAN	0	0	10	1	6.6	50	50	43	10	10	10	10	1	18	4.5	4.5	4.5	4.5	31.10	13.30	30.45						1000	1
2	ISV21CV002	BHASKARA B	9	5	10	5	0.0	3.0	5.5			1222			1.0.36	The state		5.5	5.5	55	32.10	15.50	44.45	22.10	81.89	47.69	90.35	75.68		
-	LSV21CV003	CHANDAN KUMAR CHAUDHARY	15	0	10	9	6.6	5.0	6.6	46 39	10	10	10			22	5.5	1.25	1.25	1.25	23.85	11.25	31.20 28.55	16.20	60.84 64.67	34.62 62.31	63.41 58.03	55.48 54.97		_
4	1SV21CV004	DARSHAN T J	10	0	6	5	6.6	3.0	3.3	39	10	10	10	0 10		11	2.75	2.75	2.75	2.75	25.35	20.25	20100					68.84		10 12
5	1SV21CV005	HARSHITHA C G	8	8		3	0.0				1928	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1953		1. 1. 1. 1.	1.0.0		3.5	35	3.5	30.10	13.50	31.60	20.10	76.79	41.54	64.23	56.85		
	1SV21CV007	LALAWMPULA CHHAKCHHUAK	8	0	10	4	6.6	6.6	6.6	46	10	10	1			14	3.5	0 0	0	0	25.60 26.85	10.00	36.45 28.35	16.60 16.85	65.31 68.49	30.77 54.62	74.09 57.62	57.71		
7	1SV21CV008	LIANDINGPUIA RALTE	14	0	1	8	6.6				10	10	1	0 10	0	1	0.25	0.25	0.25	0.25	26.85	17.50	27.45	16.60	67.86	53.85	55.79	56.85		
8	15V21CV010	SHANI CHAUDHARY	8	8	10		6.6		6.6		10	10	1	0 1	D	0	(		0	0	25.61	20.00	22.45	16.60	65.33	61.54		56.85		
0	15V21CV011	SHREYAS M	8	8	10		5.6		6.6		1	10	1	0 1	0	0	(		0	5	30.10	20.00	39.60	21.60	76.79	61.54		73.97		
10	1SV21CV014	TEJASWINI K	8	10	10		5.6		a factor of the second	46	1	10	1	0 1	0	20	-	5	2.25	2.25	22.25	17.25	26.75	12.25	56.76	53.08	54.37	41.95		
11	ISV21CV015	Y SHILPA	9	5	1		0.0				1	10	1	0 1	0	9	2.2	5 2.25	2.25	2.23	34.10	18.00	28.60	19.60	86.99	55.38		67.12		
12	1SV22CV400	JEEVAN T K	8	5	-		6.6				1	10	) 1	0 1	0	12	-	3 3	3 3	45	31.10	14.50	36.10	17.80	79.34	44.62	73.37	60.96	++	
13	1SV22CV401	RANJITH V	9	5	1	-	6.6				1	10	) 1	.0 1	0	18	4.	5 4.	4.5	4.5	54.40							59.1		
14	1SV22CV402	VIMALATL	10	0	1		0.0								-	1	1			1.1.1			1		71.30					
	A THE STATE								-		1					1000	-			1					1	1 7	3 3	1	4	-
				1				1000		1	1	-	-	-						1					2.14	4 1.48	8 1.85	1.7	1	

-HNMacepul

HOD Dept. of Civil Engineering SIET, TUMKUR - 6,

PRINCIPAL SILT. TUMKUF

### SIRA ROAD, TUMKUR- 572 106.

### **DEPARTMENT OF CIVIL ENGINEERING**

SUBJECT	DESIGN OF STEEL STRUCTURAL ELEMENTS	SUBJECT CODE	18CV61
---------	----------------------------------------	--------------	--------

#### **COURSE OUTCOME**

- **CO1.** Possess knowledge of Steel Structures Advantages and Disadvantages of Steel structures, steel code provisions and plastic behaviour of structural steel.
- CO2. Understand the Concept of Bolted and Welded connections.
- **CO3**. Understand the Concept of Design of compression members, built-up columns and columns splices.
- CO4. Understand the Concept of Design of tension members, simple slab base and gusseted base.
- **CO5.** Understand the Concept of Design of laterally supported and un-supported steel beams.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- P011 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **P012** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHRI	DEVII	10111	UIL			ERING				
FACULTY	NAME		Ir. MA	NOGN	AHN							
BRAN	СН		C	ev	*	A	CADE	MIC Y	EAR		2022-3	23
COURSE	B.E		SEMI	ESTER					VI			
SUBJECT	DE	SIGN	OF STI ELE	EEL ST MENT	TRUCT S	<b>FURA</b>	L	SUBJE	ст со	DE	18CV	61
CO & PO M	APPIN	G										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	3	3	3					3				3
C01	3							3				3
CO2	3	3	3					3				
COA	3	3	3					3				3
CO3								3				3
CO4	3	3	3					3				
	3	3	3					3				3
CO5								3				3
AVERAGE	3	3	3									
						01	FRA	LL MA	PPINC	G OF SU	JBJECT	3

*The accepted

Course Instructor

		C. ALCONTRACTOR		and and the		DOS	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO%	PO1	PO2	PO3	PO4	PO5	100	10.	1.90				1.90
COI	63.37	1.90	1.90	1.90					2.26		Sard Street Barriers	The second second	2.26
02	75.20	2.26	2.26	2.26					1.20	1.5×1.5×1			1.20
CO3	39.91	1.20	1.20	1.20					2.52				2.52
CO4	84.14	2.52	2.52	2.52					1.88			STATES	1.88
CO5	62.82	1.88	1.88	1.88					1.00				1.05
VERA			1.05	1.95					1.95				1.95
GE	65.09	1.95	1.95	1.95						F	inal attain	ment leve	1 1.8

**CONCLUSION:** 

- 60% IS THE EXPECTED ATTAINMENT FOR THE ACADEMIC YEAR 2022-2023. I.
- 65.09% OF ATTAINMENT IS REACHED BY THE STUDENTS

II.

el HOD



HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

ibject: DESIG	GN OF RCC AND STEEL ST	RUCTURES	Subject Co	ode: 18CV6	1	-				2022-23														
-	Stra Chier Sta			41	IA	2	IA	.3	ng at the	SEE	a states	Salat al 1	estation of	S. Cart	0.08240.033	TOTAL	COS ATTAIN	INMENT		PERC	NTAGE OF	TOTAL COS	ATTAINNN	IENT
L.NO	USN	STUDENT NAME	CO1 15marks	CO2 15marks	CO3 15marks	CO4 15marks	CO4 15marks	CO5 15marks	SEE	CO1	CO2	C03	C04	CO5	CO1 29 MARKS	CO2 29 MARKS	CO3 29 MARKS	CO4 44 MARKS	CO5 29 MARKS	CO1	CO2	CO3	C04	COS
1	1SV19CV006 ·	ARVIND SHARMA KAKCHINGTABAM	12.75	10.50	0.00	0	0	8.25	4	0.8	0.8	0.8	0.8	0.8	15.55	13.30	2.80	2.80	11.05	53.62	45.86	9.66	6.36	38.10
2	1SV20CV001	ADARSHA SING OKRAM	12	16.50	0.00	27	13.5		29	5.8	5.8	5.8	5.8	5.8		24.30	7.80	48.30	21.30	68.28	83.79	26.90	109.77	73.45
3	1SV20CV002	AKASH T R	0	0.00	0.00	0	13.5		14	2.8	2.8	2.8	2.8	2.8	4.80	4.80	4.80	18.30	13.80	16.55	16.55	16.55	41.59	47.59
4	1SV20CV003	DIPENDRA KUMAR PANDIT	15	15.00	0.00	28.5	13.5	10.5	26	5.2	5.2	5.2	5.2	5.2		22.20	7.20	49.20	17.70	76.55	76.55	24.83	111.82	61.03
5	1SV20CV005	LAKSHMI G V	14.25	14.25	0.00	27	14.25		23	4.6	4.6	4.6	4.6	4.6	20.85	20.85	6.60	43.20	19.35	71.90	71.90	24.83	108.75	66.72
6	1SV20CV006	MAHALAKSHMI B	12.75	23.25	13.50	11.25	13.5		9	1.8	1.8	1.8	1.8	1.8	16.55	27.05	17.30	28.55	16.55	57.07	93.28	59.66	64.89	57.07
7	1SV20CV007	PANKAJ VARMA	14.25	9.75	0.00	15	13.5	a contract of the second s	21	4.2	4.2	4.2	4.2	4.2	20.45	15.95	6.20	34.70	15.95	70.52	55.00	21.38	78.86	55.00
8	1SV20CV008	PRAMILA S	14.25	14.25	15.00	6	13.5		29	5.8	5.8	5.8	5.8	5.8	22.05	22.05	22.80	27.30	21.30	76.03	76.03	78.62	62.05	73.45
9	1SV20CV009	SANJANA D M	15	17.25	15.00	15	15		42	8.4	8.4	8.4	8.4	8.4	25.40	27.65	25.40	40.40	21.50	87.59	95.34	87.59	91.82	77.24
10	1SV20CV010	SHWETHA P	12	14.25	0.00	27	14.25		24	4.8	4.8	4.8	4.8	4.8	18.80	21.05	6.80	48.05	18.80	64.83	72.59	23.45	109.20	64.83
11	1SV20CV011	SIDDARTHA K R	15	18.00	14.25	15	15			2.8	2.8	2.8	2.8	2.8	19.80	22.80	19.05	34.80	16.05	68.28	78.62	65.69	79.09	55.34
12	1SV20CV014	YAMUNA M	0	27.00	0.00	28.5	15		14	2.8	2.8	2.8	2.8	2.8	4.80	31.80	4.80	48.30	17.55	16.55	109.66	16.55	109.77	60.52
13	1SV20CV015	YASHWANTH KUMAR T	15	19.50	0.00	29.25	13.5		32	6.4	6.4	6.4	6.4	6.4	23.40	27.90	8.40	51.15	21.15	80.69	96.21	28.97	116.25	72.93
14	1SV21CV400	SOUMYA V	14.25	15.00	13.50	15	15		33	6.6	6.6	6.6	6.6	6.6	22.85	23.60	22.10	38.60	22.10	78.79	81.38	76.21	87.73	76.21
									1			5		- 		34-				63.37	75.20	39.91	84.14	62.82
			132.5	1.1.1			2.2.3.5.1	1.7107-0.10	355		ALL REAL	1000	5. 1.	1	N. H. ITEL	Same 2 - 19		1000		0.63	0.75	0.40	0.84	0.63
											-					All and the	2			3	3	3	3	3
																200		-		1.90	2.26	1.20	2.52	1.88

-HRAR accepted

raheelipmor

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

PRINCIPAL SIET. TUMKUR.

SIET. TU



Academic Year	:2022-23 (EVEN Sem)	Faculty	: Dr. G MaheshKumar
Subject	: Applied Geotechnical Engineering	Semester	:6
Code	:18CV62		

	Course Outcomes
C01	Ability to plan and execute geotechnical site investigation program for different civil engineering projects.
CO2	Understanding of stress distribution and resulting settlement beneath the loaded footings on sand and clayey soils.
CO3	Ability to estimate factor of safety against failure of slopes and to compute lateral pressure distribution behind earth retaining structures.
<b>CO4</b>	Ability to determine bearing capacity of soil and achieve proficiency in proportioning shallow isolated and combined footings for uniform bearing pressure.
C05	Capable of estimating load carrying capacity of single and group of piles.

#### **PROGRAM OUTCOMES**

**PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

**PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

**PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

**PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions. **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

**PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

P07 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

**PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

**P011** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

**PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.



				CO	-PO Ma	pping							
						POs				+ Test			
COS	1	2	3	4	5	6	7	8	9	10	11	12	
C01	-	3	3	3	1	2	2	3	3	2	3	3	2.6
CO1 CO2	2	3	3	2	1	3	2	3 .	3	3	3	3	2.7
	3		3	2	1	3	2	3	3	3	3	3	2.7
CO3	3	3		3	3	3	2	3	2	2	2	3	2.7
CO4	3	3	3		3	3	2	3	2	2	2	3	2.7
C05	3	3	3	3	3	5	-						
Average	3	3	3	2.6	1.8	2.8	2	3	2.6	2.4	2.6	3	2.7
	)					OV	ERAL	L MAI	PPING	OF S	UBJEC	T = 2.7	- Second

					CO-P	O AT	ΓAINN	MENT	7					
						P	Os							
COS	% COS	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	66	3	3	3	3	1	2	2	3	3	2	3	3	2.6
CO2	65	3	3	3	2	1	3	2	3	3	3	3	3	2.7
CO3	62	3	3	3	2	1	3	2	3	3	3	3	3	2.7
CO4	67	3	3	3	3	3	· 3	2	3	2	2	2	3	2.7
CO5	68	3	3	3	3	3	3	2	3	2	2	2	3	2.7
Average		3	3	3	2.6	1.8	2.8	2	3	2.6	2.4	2.6	3	2.7
									]	FINIA	L ATJ	<b>CAINN</b>	<b>IENT</b>	2.7

**Course Instructor** 

aheshpmi,

HOD HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

M PRINCIPAL SIET. TUMKUR.

ACADEMIC 2	022-2	3 EVEN	1.1.1.1.1.1						AGE	18CV62																								
SEM: VI Civil		IA TES	T1		IA TES	T2		IA	TEST 3								40						60		44	29	29	29	29					
USN	C01	CO2	TOTAL	C01	CO3	TOTAL	CO4	CO5	TOTAL	AVE(30)	CO1	CO2	CO3	CO4	CO5	Asmt	CIE	CO1	CO2	CO3	CO4	CO5	SEE	G TOT	CO1	CO2	CO3			CO1	CO2	CO3	CO4	CO5
15V20CV001	12	12	24	15	14	29	12	12	24	26	2	2	2	2	2	10	36	9	9	9	9	11	47	83	38	23	25	23	25					86.2
1SV20CV002	0	0	0	15	12	27	0	0	0	9	2	2	2	2	2	10	19	4	4	4	4	5	21	40	21	6	18	6	7	47.7	20.7	62.1	20.7	24.1
15V20CV003	6	6	12	7	6	13	7	7	14	13	2	2	2	2	2	10	23	5	6	6	6	6	29	52	20	14	14	15	15					51.7
1SV20CV005	10	9	19	8	7	15	9	8	17	17	2	2	2	2	2	10	27	6	7	7	7	7	34	61	26	18	16	18	17	59.1				58.6
1SV20CV006	11	11	22	3	2	5	8	7	15	14	2	2	2	2	2	10	24	4	4	4	4	5	21	45	20	17	8	14	14	45.5				48.3
1SV20CV007	12	12	24	6	5	11	8	8	16	17	2	2	2	2	2	10	27	4	5	5	5	5	24	51	24	19	12	15	15					51.7
1SV20CV008	12	13	23	10	10	20	14	13	27	23	2	2	2	2	2	10	33	6	6	6	6	6	30	63	30	21	18	22	21	68.2	72.4	62.1	75.9	72.4
15V20CV009	15	14	29	14	14	28	15	15	30	29	2	2	2	2	2	10	39	9	9	9	9	9	45	84	40	25	25	26	26				1111	89.7
15V20CV010	13	12	25	13	13	26	14	14	24	25	2	2	2	2	2	10	35	7	7	7	7	8	36	71	35	21	22	23	24					82.8
15V20CV014	8	8	16	14	13	27	15	15	30	24	2	2	2	2	2	10	34	5	5	5	5	6	26	60	29	15	20	22	23	65.9				79.3
1SV20CV015	15	14	29	6	6	12	15	15	30	24	2	2	2	2	2	10	34	6	6	6	6	6	30	64	29	22	14	23	23	65.9				79.3
1SV21CV400	13	13	26	14	13	27	15	15	30	28	2	2	2	2	2	10	38	8	9	9	9	9	44	82	37	24	24	26	26					89.7
TOTAL	127	124	249	125	115	240	132	129	257	249	24	24	24	24	24	120	369	73	77	77	77	83	387	756	349	225	216			793	776	745		814
Students	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12		12	12	12	12	12	12
Average	11	10	20.75	10	9.6	20	11	11	21.42	20.75	2	2	2	2	2	10	30.8	6.1	6.4	6.4	6.4	6.9	32.3	63	29.1	19	18	19	20		100	62.1		67.8

114	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	1	2	2	3	3	2	3	3	2.6
CO2	3	3	3	2	1	3	2	3	3	3	3	3	2.7
CO3	3	3	3	2	1	3	2	3	3	3	3	3	2.7
CO4	3	3	3	3	3	3	2	3	2	2	2	3	2.7
CO5	3	3	3	3	3	3	2	3	2	2	2	3	2.7
200	3	3	3	2.6	1.8	2.8	2	3	2.6	2.4	2.6	3	2.7

	%	PO1	PO2	PO3	<b>PO4</b>	PO5	PO6	P07	P08	PO9	PO10	P011	PO12	
CO1	66	2	2	2	2	0.66	1.322	1.32	2	2	2	2	1.983	1.76
CO2	65	1.9	1.9	1.9	1.3	0.65	1.94	1.29	1.9	1.9	1.9	1.9	1.9397	1.72
CO3	62	1.9	1.9	1.9	1.2	0.62	1.862	1.24	1.9	1.9	1.9	1.9	1.8621	1.66
CO4	67	2	2	2	2	2.01	2.009	1.34	2	1.3	1.3	1.3	2.0086	1.79
CO5	68	2	2	2	2	2.03	2.034	1.36	2	1.4	1.4	1.4	2.0345	1.81
Aver	age	2	2	2	1.7	1.19	1.833	1.31	2	1.7	1.7	1.7	1.9656	1.75

Course

HOD HOD Dept. of Civil Engineering SIET, TUMKUR - 6. -

Principal ra? PRINCIPAL SIET. TUMKUR.



### **DEPARTMENT OF CIVIL ENGINEERING**

SUBJECT	HYDROLOGY AND IRRIGATION ENGINEERING	SUBJECT CODE	18CV63
---------	-----------------------------------------	--------------	--------

#### **COURSE OUTCOME**

CO 1. Understand the importance of hydrology and its components.

CO2. Measure precipitation and analyze the data and analyze the losses in precipitation.

CO3. Estimate runoff and develop unit hydrographs.

CO4. Find the benefits and ill-effects of irrigation.

CO5. Find the quantity of irrigation water and frequency of irrigation for various crops.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI	INSTIT	UTE	OF EN	IGIN	EERING	3 & TI	ECHNC	DLOGY	
FACULTY	NAM	E I	Mr. AB	HISHE	KAI	)						
BRAN	СН			IVIL IEERIN	G	A	CAD	EMIC Y	EAR		2022-	-23
COURSE	B.J	E	SEM	ESTER		6	5	SECTIO	N			
SUBJECT	HY	/DRO		AND II NEERI		ATIO	V	SUBJE	ст сс	DDE	18CV	763
CO & PO M	APPIN	٩G						al sign o				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2										
CO2	3	3	2					2				
CO3	2	3	3					3				
C04	2	3	3					2				
C05	2	3										
AVERAGE	2	3										
						OVI	CRAI	L MAP	PING	OF SU	BJECT	2.5

COAN	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	56.90	1.14	1.14										
CO2	76.14	2.28	2.28	2.28							1.14		
CO3	62.51	1.25	1.88	1.88							2.28		
CO4	56.94	1.14	1.71	1.71							1.14		
C05	65.53	1.31	1.97										
AVERAGÉ		1.42	1.79	1.96							1.52		
					FI	NAL A	TTAI	NMEN'	r levi	EL OF '	THE CO	DURSE	1.66

Academic year	2022-23	And Charlen	SEM	VIII	Total s	strength	14	1	Subjec	xt	HYDE	ROLOC	Y AN	DWA	TER R	ESOU	RCE E	18CV	53	an				1200			1
Salar Andrew Street		Г 1(40М)	IA TE	ST 2(40M)	IA TES	ST 3(30M)	ASSI	GNEM	ENT /	QUIZ	(10 M)	a la gran	SEE I	MARK	S(60)		Total C	os AT	TAINM	ENT		% of individ	lual CO			State Line	SEE Tot
JSN	CO1	CO2	CO2	CO3	CO4	CO5	COI	2CO2:	CO3 2	CO4:	CO5 2	CO1=	CO2	CO3 =	CO4 =	COS	CO1=4	CO2=	CO3=	CO4=2	COS	COI	CO2	CO3	CO4	the second s	60M
SV19CV006	1	22	and the second	6	6	7	2	2	2	2	2	5	5	4	4	4	8					25.0		and the second se	28.6		
SV20CV001	17	22	1	26	13	11	2	2	2	2	2	9	9	9	8	8	28	18	37	23	23	87.5	100 St. 128 St. 2	84.1	54.8	the state of the local sector	A CONTRACTOR OF THE PARTY OF TH
SV20CV002	14	16		30			1	1	1	2	2	5	5	5	6	6	20	22	36	Rateriala	0	62.5	61.1	66.7	57.1	March Concernments (1975)	A REAL PROPERTY AND A REAL
SV20CV003	and the second	25	61.00	16	9	3	2	2	2	2	2	7	7	7	6	7	9	124-00kg py 1-76.1	CONTRACTOR OFFICE	17	12	0.0	And a state of the state	100 - 200 - 100 - 1 - 1 - 1 - 1		11.3 (A. 89) STOLES	and the second second second
SV20CV005	10	17	1.1.1.1.1.1	27	6	6	2	2	2	2	2	6	6	6	6	7	18	25	17,000,010	14	15	56.3	69.4	79.5	50.0	Superior 19 8 800	CONTRACTOR DUTY
SV20CV006	6	16	7	21	4	9	1	2	2	2	2	7	7	6		6	14	32	29	17	17	43.8	69.6	and the second second		T	and the second second second
SV20CV007	11	20	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	28	11	4	2	2	2	1	2	7	7	8	7	7	20	Solution and				62.5	80.6	100000000000000000000000000000000000000	A CONTRACT OF A CONTRACT OF A DATE	and the second s	A REAL PROPERTY AND A REAL
SV20CV008	11	20	9	25	22	10	2	2	2	2	2	9	9	10	10	0	20	40	1111	34	21	75.9	81.6	84.1	82.9	77.8	A STATE OF A
SV20CV009	18	22	1999	39	102.40.512 1510/22/2	State States 271	1.1.1.1.1.1	2	2	2	2	9	0	8		1000	29	33	0.4.000.000	36	CONTRACTOR OF	90.6	OR BOARD AND THE	90.7	A Designed and the DATE with	And the part of the second second	Sulling Buch School
SV20CV010	14		1.1.	30			1.1.2.1.1	2	2	2	2	8	0	0	8	-	24			1000	16		1	12210110101010101010		Line and the first	A PERCENCIPAL PLATE AND IN
SV20CV011	2	25		16	11151070-078	Statistics and shares		2	1		2	0	6			-	24	31		31		75.0	and the second second	75.9		A dealer and a second second	a state for daily
SV20CV014		18		5	11111111111111	ALC: NO DE CONTRACTOR		2	1	1	1	2	0	0	6	0		00	23	17	16	47.4		42.6	and the second second second		State of the second state of the
SV20CV015	12				AND AND DRAW	Training Line	100 100	2	2	2	2	1	1	/	1	1	13	100	14	28	19	44.8	Restances to	31.8		and the second se	AND A CALL
SV21CV400	A CONTRACTOR OF	To Lot Mark La Track	1	12	Record of Long	1000 C	CONTRACTOR OF	2	2	2	2	6	6	6	6		20	29	20	21	15	69.0	74.4	37.0	50.0	57.7	2
572107400	16	19	-terr Wag	32	25	10	2	2	2	2	2	8	8	8	8	8	26	29	42	35	20	81.3	80.6	77.8	83.3	76.9	4

56.9 76.1 62.5 56.9 65.5 18.1

Abhie hel Course Instructor

epicheshower, HOD

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

Principal atte PRINCIPAL SIET. TUMKUR.



Acader	nic Year :2022-23 (EVEN Sem)	Faculty	: Mr. Prakash J
Subjec	t : Railway, Harbours, Tunnelling & Airports	Semester	:6
Code	:18CV645		
	Course Outco	mes	
C01	Acquires capability of choosing alignment and a runway and taxiway.	lso design geometric aspe	cts of railway system,
CO2	Suggest and estimate the material quantity requable to determine the hauling capacity of a locon		rack and also will be
CO3	Develop layout plan of airport, harbor, dock and identify required type of visual and/or navigatio		ined knowledge to

CO4 Apply the knowledge gained to conduct surveying, understand the tunneling activities.

#### **PROGRAM OUTCOMES**

**PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

**PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

**PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

**PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

**PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

**PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

**PO7** Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

**PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

**PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

**PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.



					Hanna.	POs						
COS	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	2	0	0	0	0	1	1	0	0	0	1
CO2	3	2	0	0	0	1	0	1	0	0	0	1
CO3	3	2	0	0	0	1	1	1	0	0	0	1
CO4	3	2	0	0	0	1	1	1	0	0	0	1
Average	3	2	0	0	0	1	1	1	0	0	0	1

OVERALL MAPPING OF SUBJECT = 1.5

					CO-I	PO AT	TAIN	MEN	Г					
						I	POs							
COS	% COS	1	2	3	4	5	6	7	8	9	10	11	12	
C01	55.92	1.68	1.12	0	0	.0	0	0.56	0.56	0	0	0	0.56	0.90
CO2	60.81	1.82	1.22	0	0	0	0.61	0	0.61	0	0	0	0.61	0.97
CO3	65.63	1.97	1.31	0	0	0	0.66	0.66	0.66	0	0	0	0.66	0.99
CO4	65.59	1.97	1.31	0	0	0	0.66	0.66	0.66	0	0	0	0.66	0.99
Average	61.99	1.86	1.24	0.00	0.00	0.00	0.64	0.63	0.62	0.00	0.00	0.00	0.62	0.93
									a mandal states a	LAN CONSERVE			In the second second	

## FINIAL ATTAINMENT 0.96

Munde Alexand PRINCIPAL SILT. TUMKUR.

**Course Instructor** 

HOD HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

Principal

Sub Code: 18CV6-	RAILWAY, HARBOR, TUNNEL & AIRPORT ENGINEERING	2022-23 EVEN	VI TH SEM
the second se		and and a strand a	-

15

14

8.14 8.79

15 14

29

SL No.

1

7

8

9 10

11

12

13

14

1SV21CV400

Sowmya v

average

USN NO	Name of the Student		IAI		1	IA2	and Gales		IA3			ASSI	IGNM	IENT			CIE M	ARKS			SIE	MARK	s	60 MAR				
a second they have been				100	1.										AND PAL	128	1 4 2 2		1.1.1.1					KS		<b>DS PERC</b>		the second se
		COI	CO2	TOTAL	CO2	CO3	TOTA L	CO3	CO4	TOT	CO1	CO2	CO3	CO4	TOTA L	C01	CO2	CO3	CO4	C01	CO2	CO3	CO4	SIE	CO1=32. 5	CO2=47. 5	CO3= 47.5	CO4=32. 5
1SV19CV006	Arvind Sharma Kakchingtabam	10	13	23		5 5	n		7 8	15	2.5	5 2.5	2.5	2.5	10	12.5	21.5	14.5	10.5	1.92	1.92	1.917	1.9167	7.667	44.36	49.30	34.56	38.21
1SV20CV001	Adarsha Sing Okram	14	15	29	8	9	17	15	5 14	29	2.5	5 2.5	2.5	2.5	10	16.5	25.5	26.5	16.5	8.75	8.75	8.75	8.75	35	77.69	72.11	74.21	77.69
1SV20CV002	Akash T R	0	0	) (		9	16	10	0 10	20	2.5	5 2.5	2.5	2.5	10	2.5	9.5	21.5	12.5	2.75	2.75	2.75	2.75	11	16.15	25.79	51.05	46.92
1SV20CV003	Dipendra Kumar Pandit	0	7	1	7 1	7 7	14	10	0 6	6 16	2.5	5 2.5	2.5	2.5	10	2.5	16.5	19.5	8.5	7.92	7.92	7.917	7.9167	31.67	32.05	51.40	57.72	50.51
1SV20CV005	Lakshmi G V	12	13	25	5 10	10	20	12	2 15	5 27	2.5	5 2.5	2.5	2.5	10	14.5	25.5	24.5	17.5	9.75	9.75	9.75	9.75	39	74.62	74.21	72.11	83.85
1SV20CV006	Mahalakshmi B	4	5	5	9 9	0 10	19	13	3 12	2 25	2.5	5 2.5	2.5	2.5	10	6.5	16.5	25.5	14.5	7.08	7.08	7.083	7.0833	28.33	41.79	49.65	68.60	66.41
1SV20CV007	Pankaj Varma	10	6	5 16	5 12	2 10	22		7 10	17	2.5	5 2.5	2.5	2.5	10	12.5	20.5	19.5	12.5	9.42	9.42	9.417	9.4167	37.67	67.44	62.98	60.88	67.44
1SV20CV008	Pramila S	0	C		12	11	23	1	5 14	4 29	2.5	5 2.5	2.5	2.5	10	2.5	14.5	28.5	16.5	10.7	10.7	10.67	10.667	42.67	40.51	52.98	82.46	83.59
1SV20CV009	Sanjana D M	15	15	30	14	13	27	1	5 15	5 30	2.5	5 2.5	2.5	2.5	10	17.5	31.5	30.5	17.5	10.3	10.3	10.25	10.25	41	85.38	87.89	85.79	85.38
1SV20CV010	Shwetha. P	12	11	23	3 12	11	23	13	3 14	1 27	2.5	5 2.5	2.5	2.5	10	14.5	25.5	26.5	16.5	8.17	8.17	8.167	8.1667	32.67	69.74	70.88	72.98	75.90
1SV20CV011	Siddartha K R	8	6	5 14	1 :	5 2	7		7 8	3 15	2.5	5 2.5	2.5	2.5	10	10.5	13.5	11.5	10.5	6.5	6.5	6.5	6.5	26	52.31	42.11	37.89	52.31
1SV20CV014	Yamuna M	5	5	14	1 12	2 13	25	1	8 6	5 14	2.5	5 2.5	2.5	2.5	10	7.5	23.5	23.5	8.5	5.33	5.33	5.333	5.3333	21.33	39.49	60.70	60.70	42.56
1SV20CV015	Yashwanth Kumar T	10	8	3 18	3 12	2 14	26	14	4 15	5 29	2.:	5 2.5	2.5	2.5	10	12.5	22.5	30.5	17.5	9.67	9.67	9.667	9.6667	38.67	68.21	67.72	84.56	83.59

23

2.5

PRAKASH J

				CO-	-PO-PS	O Map	ping		1.125	- Star	1 30	1012
	And the second					POs			See.		de la constante	
COS	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	0	0	0	0	1	1	0	0	0	1
CO2	3	2	0	0	0	1	0	1	0	0	0	1
CO3	3	2	0	0	0	1	1	1	0	0	0	1
CO4	3	2	0	0	0	1	1	1	0	0	0	1
Average	3	2	0	0	0	1	1	1	0	0	0	1

12 11

29

See 14							CO-PO A	TTAINM	ENT	a. And the second s				
1. Star	10 March		Rept			State 1	1.1915-917	POs	GO TAN					
COS	% CO	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	55.92	1.68	1.12	0	0	0	0	0.56	0.56	0	0	0	0.56	0.90
CO2	60.81	1.82	1.22	0	0	0	0.6	0	0.61	0	0	0	0.61	0.97
CO3	65.63	1.97	1.31	0	0	0	0.66	0.66	0.66	0	0	0	0.66	0.99
<b>CO4</b>	65.59	1.97	1.31	NOP	0	0	0.66	0.66	0.66	0	0	0	0.66	0.99
Avera ge	61.99	1.86	1.24	0.00	0.00	0.00	PA0.64	0.63	0.62	0.00	0.00	0.00	0.62	0.93
Contraction of		ALC: N	D	S	Personal.	I UIIV	KUR.	1.1.1.27		224 1225	FINIAL	ATTAIN	MENT	0.9

Alamath

83.68 75.26

60.81 65.63

63.85

65.59

Course Instructo

fine, нов ell

2.5 2.5

16.93 10.07 9.86 19.93 11.29 11.29 22.57 2.50 2.50 2.50 2.50 10.00 10.64 21.36 23.64 13.79 7.53 7.53

2.5

10 16.5

32.5 28.5 13.5 7.25 7.25

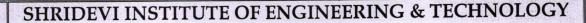
7.25

7.53

7.25

7.53 30.12

PRINCIPAL SIET. TUMKUR.


Principal

29

73.08

55.92

HOD Dept. of Civil Engineering SIET, TUMKUR - 6,





### SIRA ROAD, TUMKUR- 572 106.

### **DEPARTMENT OF EEE**

SUBJECT	Non conventional Energy Sources	SUBJECT CODE	18ME651
SUBJECT	Iton conventional Energy Sources	Deboler cobl	

#### **COURSE OUTCOME**

- CO1. To introduce the concepts of solar energy, its radiation, collection, storage and application.
- CO2. To introduce the concepts and applications of Wind energy, Biomass energy, Geothermal energy Ocean energy as alternative energy sources.
- **CO3**. To explore society's present needs and future energy demands.
- CO4. To examine energy sources and systems, including fossil fuels and nuclear energy, and then focus on renewable energy sources such as solar, biomass (conversions), wind power, geothermal, etc
- CO5. To get exposed to energy conservation methods.

- **PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- **PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- **PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- **PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

FACULTY	NAM		MRS. S	HWE	гна т	M		and a second				
BRAN	СН		F	CEE		A	CAD]	EMIC Y	EAR		2022	-23
COURSE	<b>B.</b> ]	E	SEM	ESTE	R	VI	5	SECTIO	N			
SUBJECT	N	on co	nventio	nal En	ergy S	ources		SUBJE	ст со	DDE	18ME	651
CO & PO M	APPIN	NG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	1	2	1	2					1		2	1
CO2	2	2	2	2					1		2	1
CO3	3	3	3	3					1		2	1
CO4	2	2	2	3					1		2	1
C05	2	2	2	3					1		2	1
AVERAGE	2	2.2	2	2.6					1		2	1
						OVE	CRAL	L MAP	PING	OF SUI	BJECT	1.828

	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	67	0.67	1.34	0.67	1.34					0.67		1.34	0.67
C02	58	1.16	1.16	1.16	1.16					0.58		1.16	0.58
CO3	62	1.86	1.86	1.86	1.86					0.62		1.24	0.62
CO4	98	1.96	1.96	1.96	2.94					0.98		1.96	0.98
C05	58	1.16	1.16	1.16	1.74					0.58		1.16	0.58
AVERAGE	68.6	1.362	1.496	1.362	1.808	0	0	0	0	0.686	0	1.372	0.686
			FIN	NAL AT	TAIN	MENT	LEVE	L					1.253

CIVIL 6th sem	L	ATES	F1	I	A TEST	Γ2	I	A TES	T3			Assi	gnment	C. C. L. L. L.	and a straight	Distantine h	19/6/1 (Mark) (1	SE	E	and the second second	And all all		- Contraction	TOTAL	and the same	and a start of	1233000012	and a second	Average	SALA SALES	Strad Land
	COI		TOTAL	C03	C04	TOTAL	C04	COS	TOTAL	COI	CO2	C03	C04	COS	TOTAL	COI	CO2	CO3	C04	COS	TOTAL	COI	CO2	C03	C04	C05	COI	CO2	C03	-CO4	C05
1SV19CV006	12	6	18	12	12	24	10	8	18	2	2	2	2	2	10	3.2	3.2	3.2	3.2	3.2	16	17.2	11.2	17.2	27.2	13.2	50.59	33	51	80	39
1SV20CV001	17	17	34	18	12	30	15	17	32	2	2	2	2	2	10	7.2	7.2	7.2	7.2	7.2	36	26.2	26.2	27.2	36.2	26.2	77.06	77	80	106	77
1SV20CV002	6	5	11	11	7	18	13	9	22	2	2	2	2	2	10	4.2	4.2	4.2	4.2	4.2	21	12.2	11.2	17.2	26.2	15.2	35.88	33	51	77	45
1SV20CV003	13	5	18	6	13	19	9	6	15	2	2	2	2	2	10	6.2	6.2	6.2	6.2	6.2	31	21.2	13.2	14.2	30.2	14.2	62.35	39	42	89	42
1SV20CV005	18	15	33	12	12	24	14	10	24	2	2	2	2	2	10	7.2	7.2	7.2	7.2	7.2	36	27.2	24.2	21.2	35.2	19.2	80.00	71	62	104	56
1SV20CV006	14	11	25	14	13	27	14	13	27	2	2	2	2	2	10	5.4	5.4	5.4	5.4	5.4	27	21.4	18.4	21.4	34.4	20.4	62.94	54	63	101	60
1SV20CV007	8	9	17	10	5	15	10	5	15	2	2	2	2	2	10	6.4	6.4	6.4	6.4	6.4	32	16.4	17.4	18.4	23.4	13.4	48.24	51	54	69	39
1SV20CV008	17	15	22	14	14	28	17	14	31	2	2	2	2	2	10	9.4	9.4	9.4	9.4	9.4	47	28.4	26.4	25.4	42.4	25.4	83.53	78	75	125	75
1SV20CV009	17	13	30	18	13	30	15	13	28	2	2	2	2	2	10	9.6	9.6	9.6	9.6	9.6	48	28.6	24.6	29.6	39.6	24.6	84.12	72	87	116	72
1SV20CV010	11	15	26	13	13	26	16	14	30	2	2	2	2	2	10	8	8	8	8	8	40	21	25	23	39	24	61.76	74	68	115	71
1SV20CV011	17	14	24	8	13	21	13	8	21	2	2	2	2	2	10	5.4	5.4	5.4	5.4	5.4	27	24.4	21.4	15.4	33.4	15.4	71.76	63	45	98	45
1SV20CV014	16	8	24	14	12	26	13	12	25	2	2	2	2	2	10	4.6	4.6	4.6	4.6	4.6	23	22.6	14.6	20.6	31.6	18.6	66.47	43	61	93	55
1SV20CV015	17	10	27	14	12	26	13	13	26	2	2	2	2	2	10	9.6	9.6	9.6	9.6	9.6	48	28.6	21.6	25.6	36.6	24.6	84.12	64	75	108	72
1SV21CV400	16	15	31	9	7	16	16	12	28	2	2	2	2	2	10	5.4	5.4	5.4	5.4	5.4	27	23.4	22.4	16.4	30.4	19.4	68.82	66	48	89	57
TOTAL	199	158	340	173	158	330	188	154	342	28	28	28	28	28	140	91.8	91.8	91.8	91.8	91.8	459	318.8	277.8	292.8	465.8	273.8	937.64706	817.0588	861.1765	1370	805.294
Total students	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
Avearge		100	122.00		10.12	194185		1.5	a state of a	12000	122150	13.9 200	S.S. Root	10000	12000	100000000	and the set	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1313104	N. Andrews	1.2.4.1.4	2001200	a second second	CONTRACTOR .	Ser Charles	123333320	67	58	62	98	58

CIVIL

2022-2023 18ME651 NONCONVENTION NAL ENERGY SOURCES Course Instructor

eshpen la

HOPIOD Dept. of Civil Engineering SIET, TUMKUR - 6.

Dungalte Principal NCIPAL SIET. TUMKUR.



# SIRA ROAD, TUMKUR- 572 106.

# **DEPARTMENT OF CIVIL ENGINEERING**

SUBJECT	DESIGN OF PRESTRESSED CONCRETE	SUBJECT CODE	18CV81
---------	-----------------------------------	--------------	--------

#### COURSE OUTCOME

- CO 1. Understand the requirement of PSC members for present scenario.
- CO 2. Analyse the stresses encountered in PSC element during transfer and at working.
- CO 3. Understand the effectiveness of the design of PSC after studying losses
- CO 4. Capable of analyzing the PSC element and finding its efficiency.
- CO 5. Design PSC beam for different requirements.

- PO1 Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.
- PO2 Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.
- PO4 Conduct investigations of complex Problem: An ability to identify, formulate, comprehend,
- analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.
- PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.
- PO11 Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12 Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.

COLLEGE		SHR	IDEVI ]	INSTE	UTE	OF EN	GIN	EERING				
FACULTY	NAM	E ]	Mrs. Ra	dhika	ΤN		803					
BRAN	СН		CI ENGIN	VIL EERIN	٩G	A	CADE	EMIC Y	EAR		2022-	23
COURSE	B.F	E	SEM	ESTEF	2	8	S	ECTIO	N			
SUBJECT		DESI	GN OF CON	PRES		SED		SUBJE	ст со	DDE	18CV	/81
CO & PO M	APPIN	٩G										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2										
CO2	3	3	2					2				
C03	2	3	3					3				
CO4	2	3	3					2				
C05	2	3										
AVERAGE	2	3										

COAND	IUAI			and the second							DOIL	DOT	PO12
	CO%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	TOIZ
C01	46.77	0.94	0.94										
CO2	60.72	1.82	1.82	1.21					1.21				
CO3	60.21	1.20	1.81	1.81					1.81				
CO4	64.98	1.30	1.95	1.95					1.30			A Constant of the second of th	
C05	63.24	1.26	1.90										
AVERAGE		1.31	1.68	1.66					1.44				
					F	INAL	ATTAI	NMEN	T LEV	EL OF	THE C	OURSE	1.52
			And the second sec		and the second second			the state of the s	and the states of the				

	. A	110 2.05	distant.	111111111		-			41		S	ubject	The second	12122	De		restressed con		and the second		18C	os ATTAI	MENT	2010		%0	f individual		2010/2012	SEE TO
ademic year	2022-23			VIII	S. Sconter		otal str TEST 3		41	SSICN	EMENT		Z(10 M)		6939.2		EE MARKS			CO1=45		CO3-29	CO4-28	CO5=29	CO1	CO2	CO3	CO4	CO5	60N
Sales and the	IA TEST	1(30M)	IAT	EST 2(30	M)			-15 TOTA	COL	2 CO2	2 CO3	CO		52 C	CO1=12 (	CO2 = 12	CO3 = 12	CO4 = 12	C05=12	19	18		23	23	42.2222	62.069	58.6207	82.1429	79.3103	0.3323
USN	CO1 30	TOTAL		CO3 -15	TOTAL		-	15 3		2	2	2	2	2	5	6	6	6			17		23	23	44,4444	58.6207	58.6207	82.1429	79.3103	225.0
V18CV002	12	12	10	9	19	1	-		-	2	2	2	2	2	6	6	6	7	7	20					31.1111	34.4828	34.4828	71.4286	68.9655	125
V18CV009	12	12	9	9	18	1	_			2	-	2 9 9 9	2	2	4	5	5	5	5	14			19			68.9655	65.5172	67.8571	65.5172	102
V18CV010	8	8	- 3	3	6	1	_	-		-	2	2	2	2	4	and the second	成为2011年	5	(R-1)(P)(2)	18						55.1724	58.6207	82.1429	79.3103	17.00
V18CV012	12	12	14	13	27		-			2	-	2	2	2	6	6	7	7	2.000	21						75.8621	82.7586	85.7143	82.7586	
V18CV020	13	13	8	8	16	_	_		.0	-	-	2	2	2	6	6	7	105 7		28						75.8621	75.8621	82.1429	79.3103	
V18CV023	20	20	14	15					~	-	2	2	2	2	5	5	5			5 21						55.1724		57.1429	55.1724	
V18CV031	14	14	15	15	30				0	-	-	2	2	2	4	4	4	5		5 21						51.7241		78.5714	75.8621	
V18CV033	15	15	10	9	19		9		8	2	2	2	2	2	5	5	5 5	1000	5	5 22				_		79.3103	79.3103		_	3
SV18CV035	15	15	8	1	3 16	1			30	2	2	2	2	2	5		6	1088 GBMD	5	6 21							34.4828			
SV18CV033	14	14	15	15	5 30	) 1	15	15	30	2	2	2	2	2	7		7 8	1122	8	8 19	2									
SV19CV001	10				1	3	6	6	12	2	2	2	2	-					4	5 15	10	1				34.4828			_	
	10	10	-		5	)	4	4	8	2	2	2	2	2	-				1	0 31	1.0	3			68.8889	10.3448		8 85.7143	_	_
SV19CV002	28	28	1		0 0		0	0	0	2	2	2	2	2	1			1.1.1	8	8 18	2	2 2				75.8621				_
SV19CV003	28	20	1	1	1 2	3 1	14	15	29	2	2	2	2	2	8		8		4	5 18	1	6 1	7 19	20					-	_
SV19CV004	8		_	-	-	_	13	14	27	2	2	2	2	2	4	1000	4		7	7 11	1	3 1	3 16	10	24.4444				-	_
SV19CV005	12			1 1	4	-	7	8	15	2	2	2	2	2	7	1.1.1	7			5 0			3 19	20	20	44.8276	-		_	_
SV19CV007	2				7 1	-	13	14	27	2	2	2	2	2	4	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	4		4	5 20	-		5 6	5	44.4444	51.724				_
SV19CV008	3		3	-	-	-	0	0	0	2	2	2	2	. 2	4	11-12-5	4	4	4	6 37	_			2	82.222	75.862	1 75.862	1 7		_
SV19CV009	14			-	-	~	13		27	2	2	2	2	2	5	1.2.2.1	6	6	6	6 3	_	-	-		68.888	58.620	7 62.06	9 67.857		_
SV19CV010	30			_		-	12		25	2	2	2	2	2	5	-1	5	5	5	-	-	-			4 6	82.758	6 82.758	6 85.714		_
ISV19CV012	24	1 2	_			-	_	15	30	2	2	2	2	2	7	ing a	7	7	7	7 2	-	-	-		_	41.379	3 41.379	3 60.714	3 58.620	7
ISV19CV013	18	8 1		_	_		15	7	14	2	2	2	2	2	7	S. Berneley	7	7	8	8 2	-	-		-	_	6 65.517	2 68.965	5 53.571	4 51.724	1
1SV19CV014	20	2 2	0	3	-	6	7	1	15	2	2	2	2	2	5	13000.00	5	6	6	6 1	-			-	-	-	2 62.06	9 57.142	9 58.620	)7
ISV19CV015		9	9 1	2 1			7	8		2	2	2	2	2	7	20-000	7	7	7	8 1			-	-	_			2 7	5 72.413	38
1SV19CV016		9	9 1	.0	9 1	19	7	7	14	2	2	2	2	2	6	-1-72H IQ	6	6	7	7 2	-			-	3 77.777	_			9 79.310	)3
1SV19CV017	1	3 1	3 1	0 1	11 3		12	11	23	-	2	2	2	2	6	1.1.1.1.1.1	6	6	6		-	17 1		_	1 71.111				5 72.413	38
1SV19CV018	2		7	9	9	18	15	15	30	2	2	2	2	2	6		6	6	7	7 3			20 2	-		_			_	_
1SV19CV019		-		12	12	24	12	13	25	2	2	2	2	2	5		5	5	6	6 1			13 1		5 26.666				_	_
1SV19CV020				5	6	11	7	8	15	2	2	2	2	2			4	5	5	5 3	0	20	21 1		7 66.666			_		_
1SV19CV020		-		14	14	28	10	11	21	2	2	2	2	-	-		-	5	6	6 1	6	19	18 1	.8 1	8 35.555				-	
		4 4			11	23	10	11	21	2	2	2	2	2	3		-	5	6	6	7	21	21	8	8 15.555					_
1SV19CV024		0	-			28	0	0	0	2	2	2	2	2	5		3		5	6 1	18	21	20 1		12 4	0 72.413	_			_
ISV19CV025		0	-			27	4	4	8	2	2	2	2	2			5	3	4	4 1	19	12	14 1	11	42.222			_		_
1SV19CV027				7		15	5	5	10	2	2	2	2	2		1.00	3	4				21	21 2	23	23 55.555					_
1SV19CV028		-	14			22	13	14	27	2	2	2	2	2	7		8	-					23 2	21	21 55.55			00	75 72.41	
1SV19CV029			_			27	11	12	23	2	2	2	2	2	7	-	7	8	-				24 2	21	21 64.44			00	75 72.41	_
1SV19CV030						30	12	13	25	2	2	2	2	2	6		6	1	-					19	19 22.22	72.41		_		_
1SV19CV031	1 2	21				27	11	12	23	2	2	2	2	2	5	5	5	5	0		10			20	20 37.77	78 51.72	41 55.17			
1SV19CV032		3	3				10	11	21	2	2	2	2	2	7	7	8	8	8						13 26.66	67 41.37	93 44.82	76 46.42		
1SV20CV400	0	8	8	5		11	10	9	18	2	2	2	2	2	1	L	2	2	2				10		21 82.22		21 75.86	21	75 72.41	
1SV20CV40	1	9	9	8	-	17	9		27	2	2	2	2	2	2 5	5	6	6	6						22 31.11			69 78.57	14 75.86	521
1SV20CV40		30	30	14	14	28	13	14		2	2	2	2	2	2 7	7	7	7	7	7	14	19	18	22	JE JEIN	00101				
1SV20CV40		5	5	10	9	19	13	14	27	2			-								-	-	-	-					1.1	
	-		0				12.	Sugar 1	-	-	-	-		-	-			1100	Sector States			and the second	All and and	_	-		15,100000000			

Radhika Course Instructor

rahestipurs HOD

HOD Bept. of Civil Engineering SIET, TUMKUR - 6.

N Principal alla PRINCIPAL SIET. TUMKUR.

or



Academic Year	:2022-23 (EVEN Sem)	Faculty	: Dr. G MaheshKumar
Subject	: Rehabilitation & Retrofitting	Semester	:8
Code	:18CV824		

CO1	Identify the causes for structural (Concrete) deterioration.
CO2	Assess the type and extent of damage and carry out damage assessment of structures through various types of tests.
CO3	Recommend maintenance requirements of the buildings and preventive measures against influencing factors.
CO4	Select suitable material and suggest an appropriate method for repair and rehabilitation.

#### **PROGRAM OUTCOMES**

**PO1** Engineering knowledge: An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and Knowledge.

**PO2** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

**PO3** Design / development of solutions: An ability to design solution for engineering problems and design system components or process to meet desired specifications and needs.

**PO4** Conduct investigations of complex Problem: An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.

**PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities.

**PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues.

PO7 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

**PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with the society.

**PO11** Project management and finance: An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multidisciplinary environments.

**PO12** Life-long learning: A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning.



## SIRA ROAD, TUMKUR- 572 106.

				CL	)-PO M	apping							
						POs							
COS	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	1	0	0	- 1	2	0	2	0	3	0	1	1	1.0
CO2	2	1	0	1	2	1	1	0	2	1	2	1	1.4
CO3	2	0	0	1	2	1	1	0	2	1	2	2	1.6
CO4	3	0	0	1	2	1	1	0	2	1	2	2	1.
Average				a _{lo} te et									
	2	0.25	0	1	2	0.75	1.25	0	2.25	0.75	1.75	1.5	1.!

					CO-I	PO AT	TAIN	MEN	Г					
						I	POs							
COS	% COS	1	2	3	4	5	6	7	8	9	10	11	12	6
CO1	66.94	0.67	0	0	0.67	1.34	0	1.34	0	1.46	0	0.73	0.73	0.99
CO2	68.14	1.36	0.68	. 0	0.74	1.49	0.74	0.74	0	1.49	0.74	1.49	0.74	1.02
CO3	98.03	1.96	0	0	0.98	2.18	1.09	1.09	0	2.18	1.09	2.18	2.18	1.66
CO4	68.67	2.06	0	0	0.69	1.37	0.69	0.69	0	1.38	0.69	1.38	1.38	1.15
Average		1.51	0.17	0	0.77	1.6	0.84	0.97	0	1.63 FINIA	0.84 L ATI	1.445 AINM	1.258 IENT	1.21 1.21

ian

shower, HOD

hand PRINCIPAL Brincipalikur.

**Course Instructor** 

HOD Dept. of Civil Engineering SIET, TUMKUR - 6.

ACADEMIC 2022-23 (EVEN)									R&R																							
	SEM: VIII Civil	IA TEST 1			U	IA TEST 2			IA TEST 3		3												32	2 47 32 32								
	USN	C01	CO2	TOT	CO2	CO3	TOT	CO3	CO4	тот	AVE(30)	CO1	CO2	CO3	CO4	Asmt	CIE	CO1	CO2	CO3	CO4	SEE	G TOT		CO2	CO3	CO4	CO1	CO2 0	03 (	:04	
	1SV18CV002	13	13	26	13	13	26	13	13	26	26	2	2	3	3	10	36	9	9	9	9	36	72	24	37	38	25	75	79	119	78	
	1SV18CV009	13	14	27	14	14	28	13	13	26	27	2	2	3	3	10	37	9	9	9	10	37	74	24	39	39	26	75	83	113	81	
	1SV18CV010	5	6	11	11	11	22	5	5	10	14	1	1	2	2	6	20	6	7	7	7	27	47	12	25	25	14	38	53	78	44	
	1SV18CV012	12	12	24	11	12	23	11	11	22	23	2	2	3	3	10	33	12	12	12	13	49	82	26	37	38	27	81	79	119		
	1SV18CV020	12	13	25	14	15	29	12	13	25	26	2	2	3	3	10	36	8	8	8	9	33	69	22	37	38	25	69	79		84	
	1SV18CV023	12	13	25	14	- 14	28	14	14	28	27	2	2	3	3	10	37	12	12	12	12	48	85	26	41	43	29	81	87	119	78	
	1SV18CV031	14	15	29	13	13	26	13	14	27	27	2	2	2	3	9	36	10	10	10	11	41	77	26	40	38	23		1	134	91	
	1SV18CV033	11	12	23	9	10	19	5	6	11	18	2	2	2	3	9	27	7	8	8	8	31	58	20	31	25	17	81 63	85	119	88	
	1SV18CV035	11	12	23	13	13	26	0	0	0	16	2	2	3	3	10	26	6	6	7	7	26	52	19	33	23	10		66	78	53	
	1SV18CV037	11	12	23	10	11	21	11	11	22	22	2	2	3	3	10	32	7	7			30	62	20	31			59	70	72	31	
	1SV19CV001	11	11	22	0	0	0	10	10	20	14	1	1	2	2	6	20	6	6	6	. 7	25				33	22	63	66	103	69	
	1SV19CV002	12	13	25	7	7	14	11	12	23	21	2	2	3	3	10	31	7				31	45	18	18	18	19	56	38	56	59	
	1SV19CV003	3	3	6	0	0	0	5	6	11	10	2	2	2	3	9	19		5	0	•		62	21	30	29	23	66	64	91	72	
	1SV19CV004	14	14	28	13	13	26	11	12	23	26	2	2	3	3	10		9	5	0	0	22	41	10	10	13	15	31	21	41	47	
	1SV19CV005	12	13	25	10	10	20	6	7	13	19	2	2	3	3	10	36	102	9	9	9	36	72	25	38	36	24	78	81	113	75	
	1SV19CV007	10	10	20	9	9	18	9	9	18	19	2	2	2	2	9	29	6	0	5	6	24	53	20	31	25	16	63	66	78	50	
	1SV19CV008	9	9	18	0	0	0	8	9	17	18	1	1	2	2	5	28	11	11	11	11	44	72	23	32	31	22	72	68	97	69	
	1SV19CV009	12	13	25	11	11	22	0	0	0	16	1	-	2	100	0	24	7	-	8	8	30	54	17	17	18	19	53	36	56	59	
	1SV19CV010	12	13	25	13	13	26	13	13	26	26	1	-	100 1004	2	6	22	8	8	8	8	32	54	21	33	21	10	66	70	66	31	
	1SV19CV012	13	13	26	12	12	24	10	10				1	2	2	6	32	10	10	10	11	41	73	23	37	38	26	72	79	119	81	
	1SV19CV012	11	12	23	13	13	24			20	23	1	1	2	2	6	29	10	10	10	11	41	70	24	36	34	23	75	77	106	72	
	1SV19CV014	11	11	23	12	12		13	14	27	25	2	2	3	3	10	35	10	10	11	12	43	78	23	37	40	29	72	79	125	91	
	1SV19CV014	10	10	20	7	7	24	11 5	12 5	23	23	2	2	3	3	10	33	13	13	14	14	54	87	26	38	40	29	81	81	125	91	
	1SV19CV016	12	12	20	1000		14		1000	10	15	2	2	2	3	9	24	6	6	6	6	24	48	18	25	20	14	56	53	63	44	
	1SV19CV017	11	11	24	12	13 8	25	13	14	27	25	2	2	2	3	9	34	10	10	11	11	42	76	24	36	39	28	75	77	122	88	
	1SV19CV018	13	13			1.1.1	15	9	9	18	18	2	2	2	3	9	27	6	6	7	8	27	54	19	26	26	20	59	55	81	63	
	1SV19CV018	10		26	11 7	12	23	13	13	26	25	2	2	2	2	8	33	7	7	8	8	30	63	22	33	35	23	69	70	109	72	
	1SV19CV019	10	10 13	20	3	10 3	17	8	8	16	18	2	2	3	3	10	28	10	10	11	11	42	70	22	29	32	22	69	62	100	69	
	1SV19CV020			25	2000000000			8	9	17	16	1	2	2	2	7	23	8	9	9	9	35	58	21	27	22	20	66	57	69	63	
	1SV19CV021	11	11	22	6	7	13	8	8	16	17	2	2	2	2	8	25	6	6	6	6	24	49	19	25	23	16	59	53	72	50	
	1SV19CV024	12	13	25	11	12	23	13	14	27	25	1	2	2	2	7	32	12	12	12	12	48	80	25	38	39	28	78	81	122	88	
	1SV19CV027	11	12	23	10	10	20	11	12	23	22	2	2	3	3	10	32	9	9	9	9	36	68	22	33	33	24	69	70	103	75	
		12	13	25	12	13	26	13	14	27	26	2	2	3	3	10	36	8	8	8	9	33	69	22	35	37	26	69	74	116	81	
	1SV19CV030	10	10	20	12	12	24	5	5	10	18	2	2	3	3	10	28	8	8	9	9	34	62	20	32	29	17	63	68	91	53	
	1SV19CV031	14	13	27	12	13	25	12	13	25	26	2	2	3	3	10	36	10	10	11	11	42	78	26	37	39	27	81	79	122	84	
	1SV19CV032	7	8	15	11	12	23	10	10	20	19	1	1	2	2	6	25	5	5	5	6	21	46	13	25	29	18	41	53	91	56	
	1SV20CV400	9	10	19	10	10	20	8	9	17	19	2	2	2	2	8	27	10	10	11	11	42	69	21	32	31	22	66	68	97	69	
	1SV20CV402	13	14	27	13	13	26	14	14	28	27	2	2	3	3	10	37	12	13	13	13	51	88	27	42	43	30	84	· 89	134	94	
	1SV20CV403	13	13	26	11	12	23	9	10	19	23	2	2	2	2	8	31	8	8	9	10	35	66	23	34	32	22	72	72	100	69	
	TOTAL	424			377	393	772	363	381	744	805	51	52	71	77	331	1136	241	245	255	264	1347	2483	814	1217	1192	835	2544	2589	3725	2609	
	Students	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	
	Average	11.16	11.66	22.8	9.921	10.3	20.3	9.55	10	19.58	21.184	1.342	1.3684	1.9	2	8.710526316	29.9	6.342	6.45	6.71	6.95	35.4	65.3	21.4	32		21.97	67	68	98	69	

	PO1	PO2	PO	3 PO4	1 1	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	Sec.	1.174.6	%	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO12	Co. Co.
C01	1	0	0	1		2	0	2	0	3	0	1	1	1.6	CO1	66.94	0.67	0	0	0.67	1.34	0	1.34	0	1.46	0	0.73	0.73	0.99
CO2	2	1.	0	1		2	1	-1	0	2	1	2	1	1.4	CO2	68.14	1.36	0.68	0	0.74	1.49	0.74	0.74	0		0.74		0.74	
CO3	2	0	0	1		2	1	1	0.	2	1	2	2	1.6	CO3	98.03	1.96	0	0		2.18		-	0		11 C	and the second	2.18	
CO4	3	0	0	1		2	1	1	0	2	1	2	2	1.7	CO4	68.67	2.06	0	0		1.37		-	0		0.69		1.38	
	2	0.25	0	1		2	0.75	1.25	0	2.25	0.75	1.75	1.5	1.5	Average	1.4.16 1.1.16	1.51	0.17	0	0.77		0.84		0				1.258	
										1.19					8.09.5 (11)		37530.355		S. S. S. W.	1.110.12	1	1000		1910	1			21200	1 212.00

Course Instructor

HOD PRINCIPAL SIEPringip MKUR. or HOD HOD Dept. of Civil Engineering SIET, TUMKUR - 6.