Sri Shridevi Charitable Trust (R.)

SHRIDEVI

SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY

Sira Road, Tumkur - 572 106, Karnataka, India.

Phone: 0816 - 2212629 | Principal: 0816 - 2212627, 9686114899 | Telefax: 0816 - 2212628

Email: info@shrideviengineering.org, principal@shridevienglneering.org | Website: www.shrideviengineering.org

(Approved by AICTE, New Delhi, Recognised by Govt. of Karnataka and Affiliated to Visvesvaraya Technological University, Belagavi)

Internal assessment Question paper with scheme of evaluation

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY, TUMKUR-06 DEPARTMENT OF MATHEMATICS

II-semester:I-Internal assessment Test: April -2019 18MAT21:Advanced calculus and Numerical Methods

(Common to all branches)

Note: Answer any two full questions choosing one from each part

Time: 75min]

[Max marks: 30

PART-I

1. a) Solve: $(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$

b) Solve: $\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} + 6y = e^x + 1$

e) Solve: $x^2y^{11} + xy^1 + y = 2Cos^2(log x)$

(5 marks)

(5 marks)

(5 marks)

OR

2. a) Solve: $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x} + \cos 2x - 4$

b) Solve: $x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x + \log x$

c) Solve: $(3x+2)^2 \frac{d^2y}{dx^2} + 5(3x+2)\frac{dy}{dx} - 3y = x^2 + x + 1$

(5 marks)

(5 marks)

(5 marks)

P.T.O

Manual PRINCIPAL

PART-II

3. a) Use the Regula- Falsi metjod to find a real root of the equation $x^3 - 2x - 5 = 0$ correct to three decimal places. (5 marks)

b) The area of a circle (A) corresponding to the diameter (D) is given below

D	80	85	90	95	100
Α	5026	5674	6362	7088	7854

Find the area corresponding to diameter 105 using an appropriate formula.

(5 marks)

c) Construct the interpolation polynomial for the data given below using Newton's general interpolation formula for divided differences.

(5 marks)

X	2	4	5	6	8	10
У	10	96	196	350	868	1746

OR

4. a) Use Newton -Raphson method derive an iterative formula for \sqrt{N} and hence find $\sqrt{12}$ (5 marks)

b) Find the interpolating polynomial f(x) satisfying f(0) = 0, f(2) = 4, f(4) = 56, f(6) = 204, f(8) = 496, f(10) = 980 and hence find f(3), f(5) & f(7).

(5 marks)

c) Use Lagrange's interpolation formula to find f(4) for given data

(5 marks)

X	0	2	3	6	
f(x)	-4	2	14	158	

I Semester: I Internal Test

Advanced Calculus And Numerical Methods

= 32 22 + 31022 - 44 [y=CF+PI

(b) x=et > t=logx > (D³+1)y=et+t

-- (ir

m3+1=0 > (m+1)(m-m+1)=0 =) m=-1, = ± \frac{1}{2} =. CF= Get+ est (g cos & ++ C3 sin (3+) $P_{1}^{2} = \frac{1}{3+1} (e^{t} + t) = \frac{1}{3+1} e^{t} + \frac{1}{3+1} t = \frac{1}{2} e^{t} + t$ Y=CF+PI = C, e^{logx} + e^{½logx} (G (es (3) logx + Cg Siny 3 logx) 32+2=et => t=log(3x+2) 0 2= et 2 = 3 (3x+2) dy = 3 Dy (3x+2) dy = 90 (0x1) y (M) (802+20+) y = e2t-et+7 3 m2+2m-1=0 => m=-1, 13 => cf=ciet+ce/st $PT = \frac{1}{F(0)}R(t) = \frac{1}{30^2+20-1}\frac{1}{27}(e^{2t}-e^{t}+7)$ y= (F+PI = e,e++, 2 = 13t + 1 [e2t - et - 7] Part-III 3 @ - Pen = x3 - 2x - 5 (2,3) is root => (2,2,1). 12,=2.094, 2=2.094 (B) 648 688 38 726 766 4(105) = 8664 . 43 A = two + (x-x0) + (x0x1) + (x-x0)(x-x1) + (x0x1) + (x0x1) 19 100 35 259 439

Æ)Ð

40 $x=\sqrt{N} \Rightarrow x^2=N \Rightarrow f(x)=x^2-N \Rightarrow f(x)=2x$. $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)} = \frac{x_n^2 + N}{3x_n}$ 76=3, x1= = [x0+ No] = 3.5 X2= 3.4642 73=3.4641 24 = 3.4641 VIZ = 3 46 41 6 .0 6 26 12 74 18 146 9(3)=21 24 292 4(5)=115 4(7)=329 0 $\chi_0=0$ $\chi_1=2$ $\chi_2=3$ $\chi_3=6$ y = 4 9 = 9 42=14 y = 158 y = (2-71)(x-2)(x-2)(x-2) yo + (x-2)(x-2)(x-2) y, f (x2-x0) (x-x1) (x-x3) y2+ (x-x0) (x-x1) (x-x2) y3
(x2-x0) (x2-x1) (x5-x3) y2+ (x3-x0) (x3-x1) (x3-x2) = 40.003 y=40}

PRINCIPAL SIET., TUMAKURU.

HRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY, TUMKUR-06

DEPARTMENT OF MATHEMATICS

s)

PS 543667 An ISO 9901:3015 Certified Institu

[Max marks:30

Time: 75min]

PART-I

- 1. a) Employing taylor's series method, find the approximate solution for the following initial value problem at the points $x_1 = 0.1$ and $x_2 = 0.2$, $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0 (5 Marks)
 - b) Use modified euler's method to solve the equation $\frac{dy}{dx} = x + |\sqrt{y}|$ in the range $0 \le x \le 0.2$ by taking h=0.2 given that y = 1 when x = 0 (5 Marks)
 - c) Use milne's predictor & corrector method to find the value of y at x = 0.8 given $\frac{dy}{dx} = x y^2$, y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762

OR

- 2. a) Employ the Runge-Kutta method of fourth order to solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2} y(0) = 1$ at the point x = 0.2 taking h = 0.2
 - b) The following table gives the solutions of the equation $\frac{dy}{dx} = x^2 + \frac{y}{2}$ for $1 \le x \le 1.3$ at the steps of 0.1 find y at 1.4 using the adam's predictor & corrector method (5 Marks)

x	1	1.1	1.1 1.2		
y	2	2.2156	2.4649	2.7514	

c) Solve $\frac{dy}{dx} = -xy^2$ under the initial condition y(0) = 2 by using the modified euler's method at the point x = 0.1 taking h = 0.1 and Carryout two iteration. (5 Marks)

P.T.O

(5 Marks)

(5 Marks)

PART-II

3. a) State and prove Cauchy Riemann equation in the Cartesian form.

(5 Marks)

b) Show that $w = z + e^z$ is analytic and hence find $\frac{dw}{dz}$

(5 Marks)

c) Find the analytic function f(z) whose imaginary part is $e^{x}(x \sin y + y \cos y)$

(5 Marks)

OR

- 4. a) If $\phi + i \psi$ represents the complex potential of on electrostatic field where $\psi = x^2 y^2 + \frac{x}{x^2 + y^2}$, find ϕ and also the complex potential as a function of z. (5 Marks)
 - b) Evaluate $\int_{c} z^{2} dz$

(5 Marks)

- i) along the straight line from z = 0 to z = 3 + i
- ii) along the curve made up of two line segments one from z = 0 to z = 3 and another from z = 3 to z = 3 + i
- c) State and prove Cauchy's Theorem.

(5 Marks)

PRINCIPAL HET., TUMAKURU

Scheme of Evaluation Sub: Engg. Mathe-IV (17 MATGI) 10 dy = 24+3ex y=40+(x-x0) y0+(x-x0)2 y11+ 8'= 24+3e2 4 = 3 y"= 24'+3ex 41 = 9 711 = 2411+3ex Y=" = 21. y co=1)= 0.3485 y(0.2)=0.8108 dy = x+1/y/ I-stage: x=0, y=1, f(x,y)= x+19, h=0.2 Enter's 4(0) = 40+ h f(x0,40) 4(0) = 1,2 M-E A0+ P [t(x0, 40) + t(x1, 4(4))] = 128892 Y(a) = y,+ \frac{1}{2} [f(x0, y0) + f(x1, y0)] = 1.2309 y(0) = 1.2309. Thus y (0.2) = 1.2309 (0) 3/2 x-y2 4'= 0-0=0. Y2'= 0.3937 41 = 0.1996 43 = 0.5689 以(P) = 4+4h [2打-12+2号] = 0,3049 44 = 74 - 42 = 0,707 $y_4^{(c)} = y_2 + \frac{h}{3} [f_6 + 4f_3 + f_4] = 0.3046$ y (0.8) = 0.3046

I Internal Assesment Test

1-

PRINCIPAL SIET, TUMAKURU

2 @
$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
 $z_{6} = 0$, $y_{6} = 1$, $h = 0.2$
 $k_{1} = h f(x_{6}, y_{6}) = 0.2$ $k_{2} = h f(x_{6} + \frac{1}{2}) = 0.1967$
 $k_{3} = h f(x_{6} + \frac{1}{2}) = 0.1967$ $k_{4} = h f(x_{6} + \frac{1}{2}) = 0.1891$
 $y = y_{6} + \frac{1}{6}(k) = 1.196$.

(b) $\frac{dy}{dx} = x^{2} + \frac{y}{2}$ $1 \le x \le 1.3$
 $y'_{0} = 2$, $y'_{1} = 2.3178$, $y'_{2} = 2.67845$, $y'_{3} = 3.0657$ $2M$
 $y'_{4} = x^{2} + \frac{y_{4}}{3}$ $(2f_{1} - f_{2} + 2f_{3}) = 3.0793$
 $y'_{4} = x^{2} + \frac{y_{4}}{3}$ $(2f_{1} - f_{2} + 2f_{3}) = 3.0794$
 $y'_{4} = x^{2} + \frac{y_{4}}{3}$ $(2f_{1} + 4f_{2} + f_{4}) = 3.0794$
 $y'_{4} = y_{3} + \frac{1}{2}$ $(2f_{1} + 4f_{2} + f_{4}) = 3.0794$
 $y'_{4} = x_{4} + \frac{y_{4}}{3} = 3.0794$
 $y'_{4} = y_{5} + \frac{1}{2}$ $(f_{1}(x_{6}, y_{6}) + f_{1}(x_{1}, y_{1}^{(6)})] = 1.980$
 $y'_{4} = y_{5} + \frac{1}{2}$ $(f_{1}(x_{6}, y_{6}) + f_{1}(x_{1}, y_{1}^{(6)})] = 1.980$
 $y'_{4} = y_{6} + \frac{1}{2}$ $(f_{1}(x_{6}, y_{6}) + f_{1}(x_{1}, y_{1}^{(6)})] = 1.980$

[4(0·1) = 1·980]

3 @.. C-R Egns in castlesian form Statement: f(z) is Analytic $f'(z) = \lim_{z \to 0} f(z+\delta z) - f(z)$ exists.) (a) $f(x) = \frac{\partial x}{\partial x} + \frac{\partial x}{\partial x}$ (11) p(2) = -(84) + 34 $\frac{\partial x}{\partial n} = \frac{\partial \lambda}{\partial \lambda}$, $\frac{\partial x}{\partial \lambda} = -\frac{\partial \lambda}{\partial n}$ (6) W= Z+e2 2418 = (2499) + 2418 21+PV = [OC+excosy] + ? [@y+exsisy] C-Regre are sourisfied. dw = 22 +1 25 = 1+extis = 1+ez -(C) . V = ex (oc sony +y cosy) Vay= ex [xcosy-y siny+cosy] $V_{\chi} = e^{\chi} [siny + \chi siny + \gamma cosy]$ f1(2)= 1/2+1 Va put x=z xy=0 we get f'(2) = e2 (2+1) (2 M) Int f(z) = Ze +C 4 @ . 4=2-92 + 2742 $\forall \alpha = 2\alpha + y^2 - \alpha^2$ (22+y2)2 Py = -24 + (-2xy) $f'(z) = \frac{\partial \phi}{\partial x} + i \frac{\partial \psi}{\partial x}$ = 300 +1 70%

$$f(z) = i \left[z^{2} + \frac{1}{2} \right] + C$$

$$f(z) = i \left[(c + iy)^{2} + \frac{1}{2 + iy} \right] + C$$

$$i + i = (-2xy + \frac{y}{x^{2} + y^{2}}) + i \left[x^{2}y^{3} + \frac{x}{x^{2} + y^{2}} \right] + C$$

$$\phi = -2xy + \frac{y}{x^{2} + y^{2}}$$

$$\phi = -2xy + \frac{y}{x^{2} + y^{2}}$$

$$f(z) \quad (0,0) \quad to \quad (3,1) \quad \frac{y - y_{1}}{y^{2} - y_{1}} = \frac{x - x_{1}}{3 - x_{1}}$$

$$= y = \frac{3}{3} = x - \frac{y}{3}y$$

$$dx = 3dy.$$

$$\int z^{2} dz = \int (24y^{2} - 6y^{2}) + i \int (18y^{2} + 8y^{2}) dy$$

$$= \frac{18}{3} + i \frac{36}{3}$$

$$(17) \quad (0,0) \quad to \quad (3,0) \quad \text{s. Then ferm } (3,0) \quad \text{to } (3,1)$$

$$\int z^{3} dz = \int z^{2} dz + \int z^{2} dz.$$

$$= 6 + \frac{36}{3}i$$

$$f(z) \quad (0,0) \quad \text{to } (3,0) \quad \text{s. Then ferm } (3,0) \quad \text{to } (3,1)$$

$$\int z^{3} dz = \int z^{2} dz + \int z^{2} dz.$$

$$= 6 + \frac{36}{3}i$$

$$f(z) \quad (0,0) \quad \text{to } (3,0) \quad \text{s. Then ferm } (3,0) \quad \text{to } (3,1)$$

$$= \int (2x^{2} + y^{2}) dz = 0.$$

$$= \int (2x^{2} + y^{2}) dx dy + i \int (2x^{2} - y^{2}) dx dy$$

$$= \int (2x^{2} + y^{2}) dx dy + i \int (2x^{2} - y^{2}) dx dy$$

$$= \int (2x^{2} + y^{2}) dx dy + i \int (2x^{2} - y^{2}) dx dy$$

INSTITUTE OF ENGINEERING & TECHNOLOGY, TUMKUR-06 DEPARTMENT OF MATHEMATICS

IV-semester:II-Internal assessment Test: April -2019 17MAT41: Engineering mathematics-IV (Common to all branches)

Note: Answer any two full questions choosing one from each part

Time: 75min]

Max marks:30

PART-I

1. a) Using RK method solve the following differential equation at
$$x = 0.1$$
 under the given condition $\mathcal{L}_{q} = \frac{1.5 \cdot 1.2}{2.4} = \frac{d^2y}{dx^2} = x^3 \left(y + \frac{dy}{dx} \right), y(0) = 1, y'(0) = 0.5$ by taking step length h=0.1 $\mathcal{L}_{q} = 0.5$ (5 Marks) $\mathcal{L}_{q} = 0.4$ (5 Marks) Using milne's method obtain an approximate solution at the point $x = 0.4$ of the problem $\mathcal{L}_{q} = 0.4$ of the problem

$$\frac{d^{2}y}{dx^{2}} = \frac{1 \cdot 5 \cdot 9}{2} \cdot \frac{1 \cdot 5}{2} \cdot \frac{1$$

$$Z_3 + 933 |Z_3| \approx Prove \text{ that } J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x = (4)^{\frac{1}{2}} \left(\frac{\alpha}{2}\right)^{\frac{2\alpha+1}{2}+1} \left(\frac{\alpha}{2}\right)^{\frac{1}{2}(\alpha+1)}$$

(5 Marks)

2. a) Derive a series solution of Bessel's differential equation leading to Bessel's function of first kind.

b) Derive a series solution of Legendre's differential equation.

c) Prove that
$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

(5 Marks)

(5 Marks)

(5 Marks)

P.T.O

PART-II
$$S_A + S_A + S_C + S_C = S_C = 0$$

- 3. a) Verify cauchy's theorem for the function $f(z) = z^2$ where c is the square having vertices (0,0), (1,0), (1,1) and (0,1). = $\frac{1}{2}$ - $\frac{1}{2}$ + $\frac{1}{2}$ - $\frac{1}{2}$ + $\frac{1}{2}$ - $\frac{1}{2}$ + $\frac{1}{2}$ - $\frac{1}{2}$ + $\frac{1}{2}$ - $\frac{1}{2}$ (5 Marks)
 - b) State and prove cauchy's integral formula. $\int \frac{dcz}{z} dz = 2\pi i f(a)$ c) Evaluate $\int_C \frac{e^{2z}}{(z+1)(z-2)} dz$ where c is the circle |z|=3 $\int_C \frac{\partial z}{(z+1)(z-3)} dz = \int_C \frac{\partial z}{\partial z} dz + \frac{1}{\delta} \int_C \frac{\partial z}{\partial z} dz$ (5 Marks)

4. a) Evaluate using residue theorem for
$$\int_{C} \frac{e^{2z}}{(z+1)^3} dz$$
 where c is the circle $|z| = \frac{3}{2} \frac{|z|}{|z|} \frac{|z|$

- - b) Evaluate using residue theorem $\int_{C} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)^{2}(z-2)} dz \quad \text{where c is the circle } |z| = 3$ (5 Marks) $= \int_{|z-1|}^{|A|} + \int_{|z-1|}^{|A|} \frac{|z-1|}{(z-1)^{2}} dz = 2\pi i + 4\pi i + 4\pi i$ e) Discuss the transformation $w = z^{2}$ transforms the straight line parallel to co-ordinate axes (5 Marks)

Scheme of Evaluation for II s. A. Test. Sub: Engg. Mathematics-1v. (17MAT41)

Time: 75 min

Marks: 30

$$\frac{d^3y}{dx^2} = x^3(y + \frac{dy}{dx}), y(0) = 1, y'(0) = 0.5, h = 0.1$$

$$\frac{dz}{dx} = x^3(y+z) \qquad f(x,y,z) = z, \quad g(x,y,z) = x^3(y+z)$$

$$A_2 = 0$$

(400) = 1.05

(b).

Milnes

$$\frac{dz}{dz} + 3xz - 6y = 0$$
 = $\frac{dz}{dz} = 6y - 3xz$

$$Z_4' = 6.0710$$
 , $Z_4^{(P)} = 2.5268$

$$y_4^{(c)} = y_8 + \frac{h}{3} [x_9 + 4x_3 + x_4] = 1.5139$$

$$Z_4^{(4)} = 2.4770.$$
 $Z_4' = 6.1110.$

$$Z_4' = 6.110$$

SIET., TUMAKUR

C. Jy = VAX STM.

$$J^{U}(x) = \sum_{n=0}^{\infty} C_{-1} J_{n} \left(\frac{\pi}{x}\right)_{59+10} \frac{\lfloor (1+2+1)/3 \rfloor}{1} - 0$$

put n=1/2 (n) 0.
$$J_{3}(x) = \sqrt{\frac{3}{2}} \left(\sqrt{\frac{1}{36}} + (-1) \left(\frac{x^{2}}{2} \right)^{2} \frac{1}{\Gamma(5/2)!} + (-1)^{2} \left(\frac{3}{2} \right)^{4} \frac{1}{\Gamma(7/2)} \cdot \frac{1}{2!} \right)$$

$$T_{3}(x) = \sqrt{\frac{2}{2}} \left[\frac{2}{\sqrt{x}} - \frac{2}{4} \times \frac{4}{3\sqrt{x}} + \frac{2^{4}}{16} \times \frac{8}{15\sqrt{x}} + \frac{1}{2} + \frac{1}{2} \times \frac{8}{15\sqrt{x}} + \frac{1}{2} \times \frac{1}{2}$$

2. Bessels D.E
$$\int \propto J_n(\alpha x) J_n(\beta x) = \begin{cases} 0 & q \neq \beta \\ \left(J_{n+1}(\alpha)\right)^2 & q \neq \beta \end{cases}$$
Book work

(b)
$$\dot{y} = a_0 F(x) + a_1 G(x) \quad a_1 \neq 0, \quad a_1 \neq 0$$

$$a_2 = -\frac{n(n+1)}{2} a_0 \quad a_3 = -\frac{f_0(n+1)-2}{C} a_1$$

(a) =
$$\sum_{-\frac{1}{2}} (x) = \sum_{-\frac{1}{2}} (-1)^{\frac{3}{2}} (\frac{3}{2})^{\frac{2}{3} - \frac{1}{2}} \frac{1}{(\frac{1}{2})^{\frac{3}{2}}} = \frac{2}{(\frac{3}{2})^{\frac{3}{2}}} \frac{1}{\sqrt{n}} \left[1 - \frac{3^{\frac{2}{2}}}{2!} + \frac{3^{\frac{4}{4}}}{4!} - --\right]$$

$$= (\frac{2}{3})^{\frac{1}{2}} \sqrt{n} \left[1 - \frac{3^{\frac{2}{2}}}{2!} + \frac{3^{\frac{4}{4}}}{4!} - --\right]$$

$$= (\frac{2}{3})^{\frac{1}{2}} \sqrt{n} \left[1 - \frac{3^{\frac{2}{2}}}{2!} + \frac{3^{\frac{4}{4}}}{4!} - --\right]$$

$$3 \otimes A \log A \int_{A} Z^2 dz = \frac{1}{3}$$

$$\int_{AB}^{2^{2}} dz = -1 + \frac{2}{3}^{6}$$

$$\int_{BC}^{2^{2}} dz = \frac{3}{3}^{-1} \qquad \int_{Co}^{2^{2}} dz = \frac{6}{3}$$

$$\int_{BC} z^2 dz = a_3^{1} \int_{Co} z^{2} dz = i \int_{Co} z^{2} dz + i \int_{AB} z^{2} dz + \int_{BC} z^{2} dz + \int_{Co} z^{2} dz = i \int_{Co} 1 + 2i \int_{S} 1 + 2i$$

(b)
$$\int_{C} \frac{f(2)}{z+a} dz = \frac{a}{a} m f(a)$$
 proof. Book work.

(a)
$$\int_{C} \frac{f(2)}{2+\alpha} d2 = \frac{1}{2} \frac{1}{2} \frac{1}{2} d2 = \int_{C} \frac{e^{3}}{2-1} d2 + \frac{1}{2} \int_{C} \frac{e^{3}}{2+2} d2 = \int_{C} \frac{1}{2} \frac{e^{3}}{2-1} d2 + \frac{1}{2} \int_{C} \frac{e^{3}}{2+2} d2 = \int_{C} \frac{1}{2} \frac{e^{3}}{2-1} d2 + \frac{1}{2} \int_{C} \frac{e^{3}}{2+2} d2 = \int_{C} \frac{1}{2} \frac{e^{3}}{2-1} d2 + \frac{1}{2} \int_{C} \frac{e^{3}}{2+2} d2 = \int_{C} \frac{1}{2} \frac{e^{3}}{2-1} d2 + \frac{1}{2} \int_{C} \frac$$

$$A \otimes \cdot \int \frac{e^{3z}}{(z+1)^3} dz = \int \frac{e^{3z}}{(z-c+1)^3} dz$$

$$z = -i \text{ is a porte of order } m = 3$$

$$|z| = 3/2 \text{ egh ey one with (entre as (0,0) } x = 3/2$$

$$|z| = 3/2 \text{ egh ey one with (entre as (0,0) } x = 3/2$$

$$|z| = 3/2 \text{ egh ey one with (entre as (0,0) } x = 3/2$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right) \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ Lim} \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ lim} \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ lim} \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ lim} \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ lim} \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ lim} \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ lim} \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ lim} \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ lim} \left(\frac{1}{2} \text{ egh} \right)$$

$$|z| = \frac{1}{2} \text{ lim} \left(\frac{1}{2} \text{ egh} \right)$$

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY, TUMKUR-06 DEPARTMENT OF MATHEMATICS

IV-semester: III-Internal assessment Test: May -2019

17MAT41: Engineering Mathematics -IV(Common to all branches)

[Max marks: 30

Time:75min1

Note: Answer any Two full questions choosing one from each part

Part -1

1. a) The Probability distribution of finite random variables is form by the following table find k.

X	0	1	2	3	4	5	6	7	1
P(x)	0	k	2k	2k	3k	k^2	2k2	$7k^{2} + k$	

b) Obtain the Mean and Standard deviation of Binomial distribution

(5 marks)

- c) In a certain town the duration of shower is exponentially distributed with mean 5 minutes. What is the probability that a shower will last for: (5 marks)
 - (i) 10 minutes or more (ii) less than 10 minutes (iii) between 10 and 12 minutes

2. a) Obtain the Mean and Standard deviation of poisson distribution

(5 marks)

- b) The probability that of pen manufactured by a company will be defective is 0.1. If such pens selected find the probability that (i) exactly 2 will be defective (ii) Atleast 2 will be defective (iii) none will be defective (5 marks)
- c) In an examination 7% of students score less than 35% marks and 89% of students score less that 60 % marks. Find the mean and standard deviation if the marks are normally distributed. It is given that if

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \int_0^z e^{-\frac{z^2}{z}} dz$$
 then $p(1.2263) = 0.39$ and $p(1.4757) = 0.43$

Part-II

3. a) A die was thrown 9000 times and a throw of 5 or 6 was obtained 3240 times. On the assumption of random throwing, do the data indicacte on unbiased die.

(5 marks)

b) A certain stimulus administrated to each of 12 patients resulted in the following of blood pressure 5,2,8,-1,3,0,-2,2,5,0,4,6.Can it be conclded that the stimulus will in general be occumpained by an increase in blood pressure.

(5 marks)

c) Eleven students were given a test, they were given a maths first and a second test of equal difficulty was held. Is the marks given evidence that the students have benefited by extra loading.

(5 marks)

Boys	1	2	3	4	5	6	7	8	9	10	11
Marks Test	23	20	19	21	18	20	18	17	23	16	19
Marks II Test	24	19	22	19	20	20	22	20	23	20	17

OR

4. a) In an experiment of pea breedings the frequency of seed were obtained:

(5 marks)

Round & Yellow	Wrinkled Yellow	&	Round Green	&	Wrinkled & Green	Total
315	101		108		32	558 -

Theory Predicts that the frequencies should be in the proportions 9:3:3:1. Examine correspondence between theoretical experiment $[\chi^2]_{0.05} = 7.815$

(5 marks)

b) Show that $P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$ is regular stochastic matrix and also find associated unique fixed probability vector.

(5 marks)

c) With reference to the stochastic matrix $A = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ verify the property that the sequence A^2, A^3, A^4

approaches the matrix whose rows are each fixed probability vector

(5 marks)

Scheme of Evaluation
Sub: Engg. Mathematics-IV (17MAT41)
II Internal Assessment Test

12

1 @.
$$p(x_0) \ge 0$$
 & $\sum p(x_0) = 1$
 $\Rightarrow 9k + 10k^2 = 1 \Rightarrow k = -1 & 0.1$

K=0.1

P(2<6) = p(0)+p(1)+p(0)+p(3)+p(4)+p(5) = 0.81 p(3<\infty \le 6) = p(4)+p(5)+p(6)=0.33

(b). Mean and Std. deviation of Binomial disting Mean $\mu = \sum_{n} p(n) = \sum_{n} p(n) = \sum_{n} p(n)^{n} q^{n-x}$

Variance $V = \sum x^2 p(x) - \mu^2$ $V = \pi pq$ Std. deviation $\sigma = V = \sqrt{\pi pq}$.

@ f(x) = x = dx 51>0. x>0.

(1) P(2310) = 10 = = 0.1353

(h) $P(x \le 10) = \int_{0}^{10} e^{-3/5} dx = 0.08646$

$$\begin{array}{lll} & (0) & ($$

C.
$$Z = \frac{x - \mu}{z}$$

Data: $p(x < 35) = 0.07$, $p(x < 60) = 0.89$
 $Z = \frac{35 - \mu}{z} = Z_1(say)$, $Z = \frac{60 - \mu}{z} = Z_2(say)$
 $p(z < z_1) = 0.07$ $p(z < z_2) = 0.89$
 $\Rightarrow 0.5 + \phi(z_1) = 0.07$ $p(z < z_2) = 0.89$
 $\Rightarrow \phi(z_1) = 0.43$ $\Rightarrow \phi(z_2) = 0.39$
 $\phi(z_1) = -\phi(1.4757)$ $\Rightarrow \phi(z_2) = \phi(1.2263)$
 $Z = -1.4757$

3 @
$$p = \frac{2}{6} = \frac{1}{3}$$
 (no. 5 or 6 in a diec)

 $q = 1 - p = 1 - y_3 = 3/3$.

 $n = 9000$, $0 = 3840$.

 $Z = \frac{9000}{\sqrt{9000}} = \frac{3840 - 9000(3)}{\sqrt{9000} \times y_3 \times 2/3} = 5.36$
 $121 > 9.58$. Hypothesis will be rejected 3 we conclude that Dice biosed

(b) Mean M = 0 & S.D. σ . $\overline{x} = \frac{\sum f(x_0)}{T_1} = \frac{5+2+8-1+3+0-2+3+5+0+4+6}{12}$

= 2.583

(b)
$$\overline{x} = \frac{\sum f(x)}{x_0} = 2.583$$

 $S = \frac{1}{(n-1)} \sum (x_0 - \overline{x})^2 + \frac{1}{2} \sum_{S} \mu \sqrt{n}$ (s)
 $S = 3.090$ $t = 2.895$

t =0.895>0.556

.. The hypothesis rejected.

©
$$m_1 = 11$$
 $m_2 = 11$ $m_3 = 11$ $m_3 = 11$ $m_4 = 19.45$ $m_1 = 10.45$ $m_1 = 11$ $m_2 = 20.45$ $m_1 + n_2 = 2$ $m_2 + 2$ $m_1 + m_2 = 2$ $m_2 + 2$ $m_1 + m_2 = 2$ $m_2 + 2$ $m_2 + 2$ $m_2 + 2$ $m_2 + 2$ $m_1 + m_2 = 2$ $m_2 + 2$ $m_1 + m_2 = 2$ $m_2 + 2$ $m_2 + 2$ $m_2 + 2$ $m_1 + m_2 = 2$ $m_2 + 2$

The value of t is not significant at S of Significance (+ < 3.583) is The powride number of Students that the Students have benefited Extra one truding.

PRINCIPAL SIET, TUMAKURU

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$P^{3} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{$$

$$0x+y+z=1 \Rightarrow 1-3x=2x \Rightarrow 2x=6 \Rightarrow 1=15$$
[1/5 3/5 3/5] is philip vector.

(a)
$$A = \begin{bmatrix} 94 & 44 \\ 1/2 & 1/2 \end{bmatrix}$$

 $A^2 = \begin{bmatrix} 0.6875 & 0.3185 \\ 6.685 & 0.375 \end{bmatrix}$ $A^3 = \begin{bmatrix} 0.67 & 0.3883 \\ 0.6162 & 0.3487 \end{bmatrix}$

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY, TUMKUR-06 DEPARTMENT OF MATHEMATICS

IV-semester: ONLINE Internal assessment Test -II: May-2020 18MAT41-Complex analysis, probability and statistical methods (ECE branch)

Note: Answer all three questions and all questions carry equal marks

Time: 2 hrs]

[Max marks: 60

- 1. a) Find the constant K such that $f(x) = \begin{cases} kx^2, 0 < x < 3 \\ 0, otherwise \end{cases}$ is a probability density function. Also compute (i) p(1 < x < 2) (ii) $p(x \le 1)$ (iii) p(x > 1) (iv) mean (v) variance (CO5)(6marks)
 - b) The joint probability distribution of two random variables X and Y is as follows: Determine: (i) the marginal probability distribution of X and Y (ii) E(X), E(Y) and E(XY) (CO5)(7marks)

X\Y	-2	-1	4	5
1	0.1	0.2	0	0.3
2	0.2	0.1	0.1	0

- c) The joint probability function for two discrete random variables X and Y is given by f(x,y) = k(2x + y) where x and y can assume all integral values such that $0 \le x \le 2$, $0 \le y \le 3$ and f(x,y) = 0 otherwise. Find (i) the value of constant k (ii) $P(X \ge 1, Y \le 2)$ (iii) $P(X + Y \le 1)$ (iv) P(X + Y > 1) (CO5)(7marks)
- a) A coin is tossed 3 times. Let X be equal to '0' or '1' according as a head or a tail occurs on the first toss. Let Y be equal to the total number of heads which occur. Determine: (i) the marginal probability distribution of X and Y (ii) E(X), E(Y) and E(XY)(iii) σ_X and σ_Y (iv) cov(X, Y) (v) ρ(X, Y) (CO5)(6marks)
 - b) The joint probability distribution of two random variables X and Y is as follows: Determine: (i) the marginal probability distribution of X and Y (ii) E(X), E(Y) and E(XY) (CO5)(7marks)

x\y	-4	2	7	
1	1/8	1/4	1/8	
5	1/4	1/8	1/8	

- c) Evaluate $\int_c z^2 dz$ (a) along the straight line from z=0 to z=3+i(b) along the curve made up of two line segments, one from z=0 to z=3& z=3 to z=3+i (CO2)(7marks)
- a) Derive CR equation in polar form.

(CO1)(6marks)

- b) Find the bilinear transformation which maps z = ∞, i, 0 into w = −1, −i, 1. Also find the fixed points of the transformation.
 (CO2)(7marks)
- c) Discuss the transformation $w = z^2$

(CO2)(7marks)

(Dr. CHETANA C)

HOD

(Dr. NARENDRA VISWANATH)

PRINCIPAL

PRINCIPAL SIET., TUMAKURU. IV Semester: Ind IA Test.

Scheme & Solution of Valuation. { CSE Branch}

18mAT41: Complex Analysis, Probability & Statistics Method.

ie,
$$\int_0^3 kx^2 dx = 1 \implies \frac{kx^3}{3} \Big]_0^3 = 1$$
 (or) $9k = 1$.: $k = \frac{1}{9}$

①
$$P(1$$

(i)
$$P(x \le 1) = \int_0^1 \frac{x^2}{9} dx = \frac{x^3}{27} \Big|_1^1 = \frac{1}{27}$$

(ii)
$$P(x > 1) = \int_{1}^{3} \frac{e^{x^{2}}}{|y|} dx = \frac{x^{3}}{|y|^{3}} = \frac{26}{27}$$

$$(1) Mean, \mu = \int_{\infty}^{\infty} x f(x) dx = \int_{0}^{3} x \cdot \frac{\chi^{2}}{9} dx = \frac{\chi^{4}}{36} \Big|_{0}^{3} = \frac{81}{36} = \frac{9}{4}$$

Variance,
$$V = \int_{-\infty}^{\infty} x^2 f(x) dx - (\mu)^2 = \int_{0}^{2} x^2 \frac{x^2}{9} dx - (\frac{9}{4})^2 = \frac{27}{80}$$

0				V 200	T
20 1	2_	Tu- 1-2	-	4	1
for) 0.6	0.4	9(4)	0.3	0.1	1
10(1)		13/21			

(i)
$$E(x) = \sum_{i} x_{i}^{2} + 6x_{i}^{2}) = (1)(0.6) + 2(0.4) = 1.4$$

 $E(y) = \sum_{i} y_{i}^{2} y_{i}^{2} y_{i}^{2}) = (-2)(0.3) + (4)(0.3) + 4(0.1) + 5(0.3) = 4$

$$E[XY] = \sum_{i=1}^{n} 3i 3i 3i = (1)(-2)(0.1) + (1)(-1)(0.2) + (1)(4)(0) + (1)(5)(0.3) + (2)(-1)(0.1) + (2)(4)(0.1$$

(iii)
$$\nabla_{x}^{2} = E(x^{2}) - \mu_{x}^{2} \Rightarrow \nabla_{x}^{2} = 0.24 \Rightarrow \nabla_{x} = 0.49$$

 $\nabla_{y}^{2} = E(x^{2}) - \mu_{y}^{2} \Rightarrow \nabla_{y}^{2} = 9.6 \Rightarrow \nabla_{y} = 3.1$

$$\Theta$$
 $S(x,y) = \frac{Gov(x,y)}{\sqrt{x}\sqrt{y}} = \frac{-0.5}{(0.49)(3.1)} = -0.3$

(IM

(FM)

(m)

10

(1 m)

11 M

2000

(10)

100

$$f(0,0) = (2x+y)$$
 $f(0,0) = (3)$
 $f(1,2) = 4K$
 $f(0,1) = K$
 $f(1,3) = 5K$
 $f(0,2) = 2K$
 $f(0,3) = 3K$
 $f(2,0) = 4K$
 $f(1,0) = 2K$
 $f(2,1) = 5K$
 $f(2,1) = 5K$

(i)
$$P(x=2, Y=1) = 31$$

(ii) $P(x=2, Y=2) = P(x=1, y=2) + P(x=2, y=2)$
 $= P(x=1, y=0) + P(x=1, y=1) + P(x=1, y=2) + P(x=2, y=0) + P(x=1, y=2) = P_1 + P_2 + P_3 + P_3 + P_4 + P_4 + P_5 + P_6 + P_6$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/7$$

$$= 24/42 = 4/$$

$$P(x+y\neq 1) = P_{12} + P_{21} = \frac{3}{42} = \frac{1}{14}$$

$$P(x+y>1) = 1 - P(x+y \leq 1) = 1 - \frac{1}{11} = \frac{1}{9} = \frac{1}{14}$$

①
$$P(x+y>1) = 1 - P(x+y \le 1) = 1 - \frac{1}{14} = \frac{1}{14}$$
.

$$E(x) = \sum_{x \in \{0, 1\}} f(x) - (0x 1/8) + (1x/8) + (2x3/8) + (3x/8) = 3/2$$

$$E(y) = \sum_{y \in \{0, 1\}} g(y) = (0x/8) + (1x3/8) + (2x3/8) + (3x/8) = 3/2$$

$$E(y) = \sum_{y \in \{0, 1\}} g(y) = (0x/8) + (1x3/8) + (2x3/8) + (3x/8) = 3/2$$

$$\nabla_{x}^{2} = E[x^{2}] - \mu_{x}^{2} = \mu_{4} \Rightarrow \nabla_{x} = \mu_{2}$$

$$\nabla_{y}^{2} = E[y^{2}] - \mu_{y}^{2} = 3\mu_{4} \Rightarrow \nabla_{y} = 3\mu_{4}$$

Im

Im

Maginal distribution of X

Marginal distribution of Y.

①
$$\nabla_{y}^{2} = E(x^{2}) - \mu_{x}^{2} = 4$$
 $\Rightarrow \nabla_{y} = 2$.
 $\nabla_{y}^{2} = E(y^{2}) - \mu_{y}^{2} = 7\%$ $\Rightarrow \nabla_{y} = \frac{12}{4} = 4.33$.

$$C \qquad \int_{-\infty}^{\infty} f(x) dx = 1 \Rightarrow \int_{-\infty}^{\infty} \frac{K}{1+x^2} dx = 1 \Rightarrow 2 \int_{0}^{\infty} \frac{K}{1+2^2} dx = 1$$

$$2K \left[\frac{1}{1+x^2} + \frac{1}{1+x^2}$$

(1)
$$P(0 \leq x \leq 1) = \frac{1}{\pi} \int_{0}^{1} \frac{1}{1+x^{2}} dx = \frac{1}{\pi} + \alpha n^{2} \int_{0}^{1} = \frac{1}{4}$$

(m)

PRINCIPAL SIET TIMAMUSE

(1) µ=9 0=20 ⇒ 0=120.

with replacement: (3,3), (3,7) (3,11) (3,15) (7,3), (4,7) (7,11) (7,15) (11,3) (11,7) (11,11) (11,15) (15,3) (15,7) (15,11)

(15,15). Sampling means are as follows: (3,5,7,9) (5,7,9,11), (7,9,11,13) (9,11,13,15).

frequency distribution of Sampling means

V		4	1	7	11 1	10	1.0	
X	31	5			2	2	1-1	
-	-	0	3	4	~	1		
21	1 1	CX.						

$$\mu_{\bar{\chi}} = \frac{\sum_{f}^{f} x}{\sum_{f}^{f}} = 9. \quad \nabla_{\bar{\chi}}^{2} = \frac{\sum_{f}^{f} \chi^{2}}{\sum_{f}^{f}} - \left(\mu_{\bar{\chi}}\right)^{2} = \frac{1456}{16} - 9^{2} = 10$$

(1) Consider Samples without replacement.

(3,7), (3,11), (3,15) (7,11) (7,15) (11,15)

Sampling means are 5,7,9,9,11,13.

$$H_{\overline{x}} = \frac{1}{6} \left(\frac{5+7}{5+7} + \frac{1}{(5-9)^2} + \frac{1}{(5-$$

Consider
$$\sqrt{x} = \frac{1}{n} \left(\frac{Nn}{N-1} \right)$$

RHS =
$$\frac{20}{3} \left[\frac{1}{4} - \frac{2}{1} \right] = 10 \times \frac{2}{3} = \frac{20}{3} = \frac{2}{3} = \frac{2}{1} = 10 \times \frac{2}{3} = \frac{20}{3} = \frac{2}{3} = \frac$$

4100

PART-II

3. a) Find the inverse Laplace Transform of $\frac{e^{-\pi s}}{s^2+1} + \frac{se^{-2\pi s}}{s^2+4}$.

(5 Marks)

b) Verify Convolution theorem for the pair of function : f(t) = t, g(t) = cost

(5 Marks)

c) Solve Initial value problem by using Laplace transform $y^{11}(t) + 4y^{1}(t) + 4y(t) = e^{-t}$ with $y(0) = 0 = y^{1}(0)$

(5 Marks)

OR

4. a) Find the inverse Laplace Transform of $\frac{1}{s(s+1)(s+2)(s+3)}$

(5 Marks)

- b) Using Convolution theorem obtain the inverse Laplace transform of the function $\frac{1}{s(s^2+a^2)}$ (5 Marks)
- c) Solve: $y^{11}(t) + 6y^{1}(t) + 9y(t) = 12t^{2}e^{-3t}$ with $y(0) = 0 = y^{1}(0)$ with by using Laplace transform

(5marks)

PRINCIPAL SIET. TUMAKURU SUB: Transform calculus, Fourier series (Numerical Techniques (18 MAT31) II INTERNAL TEST

1. a.
$$\frac{dy}{dx} = xy^2 - 1$$
 $y(0) = 0$
 $y'(x) = x^2y(x) - 1$ $y'(0) = 0$
 $y''(x) = 2xy(x) + x^2y'(x)$ $y''(0) = 0$
 $y'''(x) = 2y(x) + 2xy'(x) + 2xy'(x) + x^2y'(x)$ $y''(0) = 0$
Taylor's series
 $y(x) = y(x_0) + (x - x_0)y'(x_0) + (x - x_0)^2 y''(x_0) + (x - x_0)^2 y''($

ME method
$$y_1^{(1)} = 40 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(0)})]$$

$$y_1^{(1)} = 1.1074$$

$$y_1^{(2)} = 1.1076$$

$$y_1^{(3)} = 1.1076 \quad \boxed{9(0.1)} = 1.1076$$

$$ME = y_2^{(1)} = 1.2305$$

$$y_2^{(2)} = 1.12307$$

$$y_2^{(3)} = 1.2307$$

PRINCIPAL SIET, TUMAKURU

- (2M)

©
$$\frac{dy}{dz} = x - y^{2}$$
 $x = 0.0.2.0.4.0.6.0.8$
 $y = 0.0.2.0.07450.1762.2$
 $y' = x - y^{2}$
 $0.1996.0.3917.0.5689.$

By Milner $y''_{H} = y_{0} + y_{1} + y_{1} + y_{2} + y_{3} + y_{4} + y_{5} +$

$$\frac{1}{3} = 1.9901$$

$$\frac{1}{3} = \frac{1}{3} = \frac{1.9901}{3}$$

$$\frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$

$$= \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$

$$\frac{1}{3} = \frac{1$$

$$(g^{2} + 4s + 4) \frac{1}{2}y(\theta)^{3} = \frac{1}{s+1}$$

$$L^{2}y(\theta)^{3} = \frac{1}{(s+1)(s+2)^{2}}$$

$$y(\theta) = L^{-1}\int_{s+1}^{1} ds + L^{-1}\int_{s+2}^{1} ds + L^{-1}\int_{(s+2)^{2}}^{1} ds + L^{-1}\int_{s+2}^{1} ds + L^{-1}\int_{s+2}$$

4 @ .
$$\lfloor \frac{1}{2} \rfloor = \lfloor \frac{1}{2} \rfloor = \lfloor \frac{1}{2} \rfloor + \lfloor \frac{1}{2$$

(b)
$$\frac{1}{S(S^2+a^2)} = \frac{1}{S}$$
. $\frac{1}{S^2+a^2}$
 $f(S) = \frac{1}{S}$ $g(S) = \frac{1}{S^2+a^2}$
 $f(S) = \frac{1}{S}$ $f'(S) = f'(S) =$

$$[t] \hat{f}(s) \cdot \hat{g}(s) \hat{g}(s) \hat{g}(s) \hat{g}(t-2i) du.$$

$$= \int_{a}^{b} \left[\frac{\sin(at-au)}{a} du. \right]_{a}^{b} = \frac{1}{a^{2}} \left(1 - \cos(at-au) \right]_{a}^{b} = \frac{1}{a^{2}} \left(1 - \cos(at-au) \right)$$

© L4y'(+)3+6 L4y'(+)3+9 L4y(+)3 = 12 L4t² e^{3t} 3.] - [M)

[8²L4y(t)3-5y(0)-y'(0)]+6[SL4y(t)3-y(0)]+9 L4y(t)3=12.21

(8²+65+9) L4y(t)3 =
$$\frac{24}{(5+3)^3}$$
 = L4y(t)3 = $\frac{24}{(5+3)^5}$
 $y(t) = 24. = 2^{t}. = 1^{4} = 2^{t}$

SHRIDEVI INSTITUTE OF ENGINEERING & TECHNOLOGY, TÜMKUR-06 DEPARTMENT OF MATHEMATICS

III-semester: III-Internal Assessment Test: NOVEMBER-2019

18MAT31: Transform calculus, Fourier series and Numerical techniques (Common to all branches)

Note: Answer any two full questions choosing one from each part

Time:75min1

[Max marks:30

- PART-I

1. a) Compute y(0.1) given $\frac{d^2y}{dx^2} = y^3$ and y = 10, $\frac{dy}{dx} = 5$ at x = 0 by Runge kutta method of fourth · order. (5 marks)

b) State and prove Euler's equation.

(5marks)

c) Find the extremal of the functional $\int_{x_1}^{x_2} (y' + x^2 y'^2) dx$

(5 marks)

2. a) Obtain the solution of the equation $2\frac{d^2y}{dx^2} = 4x + \frac{dy}{dx}$ by computing the value of the dependent (5 marks) Variable corresponding to the value 1.4 of the independent variable by applying Milne's method using:

$$y(1) = 2$$
, $y'(1) = 2$, $y(1.1) = 2.2156$, $y'(1.1) = 2.3178$, $y(1.2) = 2.4649$, $y'(1.2) = 2.6725$, $y(1.3) = 2.7514$, $y'(1.3) = 3.0657$
b) Prove that the shortest distance between two points in a plane is along the straight line joining them.

(5Marks)

c) A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a catenary. (5 marks)

P.T.O

PART-II

3. a) Find the fourier series of $f(x) = \frac{\pi - x}{2}$ in $0 < x < 2\pi$. Hence deduce that

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

(5 marks)

b) Obtain half range fourier sine series of $f(x) = x^2$ in $0 < x < \pi$

(5 marks)

 c) Determine the constant term and the first cosine and sine terms of fourier series expansion of y from the following data:

X	0	45	90.	135	180	225	270	315
у	2	3/2	1	1/2	0	1/2	1	3/2

OR

- 4. a) Find the fourier series of the periodic function defined by $f(x) = 2x x^2$ in 0 < x < 3 (5 marks)
 - b) Find the half range fourier cosine series of the function $f(x) = x(\pi x)$ in $0 < x < \pi$ (5 marks)
 - c) Obtain the constant term and the co-efficients of the first cosine and sine terms in the Fourier expansion of y from the table:

 (5 marks)

x	0	1	2	3	4	5
y	9	18	24	28	26	20

I Sem: I Internal Test: Scheme of evaluation. 18MAT31: Numerical Tech, FTand. LT

$$K_3 = 5.885$$

 $l_3 = 207.27$
 $k_4 = 21.227$

©
$$I = \int_{1}^{\lambda_{2}} (y' + x^{2}y^{2}) dx$$

$$y' = \frac{K_1 - 1}{2x^2}$$

 $y = \frac{C_1}{2} + \frac{C_2}{2}$ $C_1 = \frac{f - K_1}{2}$

II Semester: I-Internal assessment test

Sub: Engineering Chemistry (18CHE22)

Time: 90 minutes .

Section: A & B

Date: 13-03-2020

Max Marks: 30

Note:	1.	Answer any TWO FULL questions choosing one full question from each unit.
CAMPBELL S		

		Module-1	Marks	CO
1	a)	Derive Nernst equation for single electrode potential.	(5)	CO 1
	b)	With a neat diagram, explain the construction and working of Calomel electrode.	(5)	CO 1
	c)	Calculate the voltage of the cell, Fe Fe ⁺⁺ (0.01) Ag ⁺ (0.1) Ag at 25 °C, if the standard electrode potentials of Fe and Ag are -0.44V & 0.80V respectively. Write the cell reactions.	(5)	CO 1
		(OR)		
2	a)	What are electrolytic concentration cells? Explain with an example.	(5)	CO 1
	b)	Discuss the construction and working of Nickel-Meta! hydride batteries. Mention their uses.	(5)	CO 1
	c)	Calculate the emf of the electrolytic concentration cell represented as $Cu(s)$ /Cu SO_4 (0.01M) // Cu SO_4 (1M) / Cu(s) at 298K. Write the cell reactions.	(5)	CO 1

		iviodule-2	Marks	CO
3	a)	Explain the electrochemical theory of corrosion with reactions taking corrosion of iron as an example.	(5)	CO 2
	b)	Explain differential metal corrosion with an example.	(5)	CO 2
	c)	What is metal finishing? Mention the technological importance of metal finishing	(5)	CO 2

4	a)	Explain how (i) Ratio of Anodic to Cathodic area (ii) pH,influences the rate	222	
	_	of corrosion.	(5)	CO 2
	b)	What is Cathodic protection? Describe corrosion control by sacrificial anode method.	(5)	CO 2
	c)	Explain the anodizing process of aluminium	(5)	CO 2

Name of the Course instructor	Dr. Chandrasekhar N
Signature	(Ligaço
Signature of the HoD	Jean The

Nime

PRINCIPAL SIET, TUMAKURU

(A) (C) (A)

II semester: I-Internal assessment test

Date: 13-03-2020

Scheme of valuation Sub: Engineering Chemistry (18CHE22)

Q.No	Scheme of valuation	Marks
1. (a)	Derive Nernst equation for single electrode potential	5Marks
-	ΔG, ΔG*	1mark
	Reversible electrode reaction M ⁺⁰ + ne ⁻ ←→M & K _C	1mark
	$\Delta G = \Delta G^* + RTInK_c$	1mark
	Substitution	1mark
	$E = E^* + \frac{0.0591}{n} \log \frac{[M]}{[M+n]}$	1mark
	$E = E + \frac{1}{n} \log \frac{1}{[M^{+n}]}$	
(b)	Explain the construction, working and advantages of Calomel electrode	5Mark
	Diagram with labeling	1mark
	Explanation:	2mark
	Reactions Salt Bridge	
	Anode: 2Hg + 2Cl → Hg2Cl ₂ + 2e Platinum wire	1mark
	Cathode: Hg2Cl ₂ + 2e- 2Hg + 2Cl- Solution	1mark
	Advantages(Any two) Hg + Hg2C12 Hg Hg Hg Hg Hg Hg Hg2C12	
10.10	 It can be used to determine the potential of a redox react. 	
	It is used in corrosion studies	
	It is used as a reference electrode.	
	It is simple to construct.	
	The electrode potential is reproducible and stable	
(c)	Calculate the voltage of the cell, Fe Fe ⁺⁺ (0.01) Ag ⁺ (0.1) Ag at 25 °C, if the standard	5Mark
100	electrode potentials of Fe and Ag are -0.44V & 0.80V respectively. Write the cell reactions.	
SE CO	Cell reactions: At Anode: Fe-→Fe ²⁺ +2e-	1mark
	At Cathode: 2Ag+ +2e- → 2Ag	1mark
	Formula $E = E'' + \frac{0.0591}{n} log \frac{[Mn+]cathode}{[M^n+]anode}$	1mark
	n [Mn+]anode	La Nacionalità
	Substitution E = $1.24 + \frac{0.0591}{2} \log \frac{[0.1]2}{[0.01]}$	1mark
	Answer:1.24V	FERRISHER
		1mark
2. (a)	What are electrolytic concentration cells? Explain with an example	5Mark
	Definition of Electrolytic concentration cell:	1mark
	These are the galvanic cells consisting of same metal electrodes as anode and cathodes	1
	dipped in same electrolytic solution but are different in the electrolyte concentration	1mark
	Diagram with labeling:	
	Explanation:	2mark
	Reactions:	2
	At anode : Cu (S) Cu ²⁺ (M ₁) + 2e	1mark
	At cathode : Cu ²⁺ (M ₂) + 2e Cu (S)	
(b)	Explain the construction, working and uses of Ni-MH battery.	5Mark
	Diagram with labeling:	1mark
	Explanation	2mark
	Reactions	100000000000000000000000000000000000000
	September	
29	Certrade	
	Michael - Metael Agelriele Sentery	1mark

1	At anode : MH + OH M + H ₂ O + e	10 25
	At cathode : NiO (OH) + e + H2O	1mark
	NCR : MH + NiO (OH)	
	the die state unbider lantage callular phones ate	
(c)	Uses :Used in electric vehicles, laptops, cellular phones etc Calculate the emf of the electrolytic concentration cell represented as Cu(s) /Cu SO ₄	5Marks
(c)	(0.01M) // Cu SO ₄ (1M) / Cu(s) at 298K. Write the cell reactions.	Sivial ka
	Cell reactions: At Anode: Cu→Cu ²⁺ +2e	1mark
	At Cathode: Cu ²⁺ +2e ⁻ → Cu	1mark
		1mark
	Formula E = $\frac{0.0591}{n} log \frac{[M1M]cathode}{[M2M]anode}$	-
	Substitution $E = \frac{0.0591}{2} \log \frac{[1]}{[0.01]}$	1mark
	Answer:0.0591V	#HELDECUS
	Allswei .0.0391V	1mark
3.(a)	Explain the electrochemical theory of corrosion with reactions taking corrosion of iron as	5Marks
	an example.	S.M. Alexandra
	Formation of minute galvanic cells	1mark
)	Anode:Fe-→Fe ²⁺ +2e-	1mark
	Cathode: reactions (Any two reactions)	THE SECTION
	a) In acidic medium: 2H+ + 2e - → H ₂	2mark
	b) In alkaline and in the absence of O ₂ : 2 H2O + 2e- 2OH - + H ₂	
	c) In neutral and aerated medium: 2H ₂ O + O ₂ + 4e ⁻ → 4OH ⁻	
-	Corrosion product : 2Fe++ + 4OH	1mark
	2Fe (OH) ₂ + O ₂ + 2H ₂ O → 2 (Fe ₂ O ₃ . 3H ₂ O) rust.	2.025110000000
(b)	Explain differential metal corrosion with an example.	5Marks
	Diagram	1mark
9	Explanation	3mark
1	Reactions	-
	At anode: Fe Fe ⁺⁺ + 2e ⁻	1mark
	At cathode : H2O + O2 + 4e - + 4OH-	
	Corrosion Product: 2Fe ⁺⁺ + 4OH - → 2Fe (OH) ₂	
r_	2Fe (OH) ₂ + O ₂ + 2H ₂ O → 2(Fe ₂ O ₃ . 3H ₂ O) rust.	
(c)		5Marks
- 1	It is a process of modifying surface properties of metals by deposition of a layer of another	1mark
1	metal or polymer on its surface, by the formation of an oxide film.	U 56
	Technological importance of metal finishing.	4mark
100	 Imparting the metal surface to higher corrosion resistance. 	
	Imparting improved wear resistance.	
1	 Providing electrical and thermal conducting surface. 	
	 Imparting thermal resistance and hardness. 	
	Providing optical and thermal reflectivity.	
4. (a)	Explain how (i) Ratio of Anodic to Cathodic area (ii) pH influences the rate of corrosion.	5Marks
	(i) Ratio of Anodic to Cathodic area	3mark
	If a metal has small anodic and large cathodic area the rate of corrosion increases	
	and vice versa. This is because when anode is small the electrons liberated during	
7	oxidation are completely consumed on large cathodic surface for the reduction reactions	

					-6
	and rate of corros	ion increases.			
	(ii) pH.				
	pH = 10) the rate	of corrosion ceases due to to the metal. Corrosion rate	the formation		2mark
(b)	What is Cathodic	protection? Describe corrosi	ion control by	sacrificial anode method.	5Mark
	Definition of Cath	odic protection:			1mark
	made to act as car	thodic by attaching more ac		be protected from corrosion is etal to it.	1mark
	Construction - dia Explanation	gram	Onder ground oil y	De sire De	3mark
(c)	Explain the anodi	zing process of aluminium			5Marks
	Construction -Dia	gram with labeling		The State of the second of the	1mark
	Explanation :				
				followed by electro polished	0.0
		onnected to positive termin			3mark
	Steel or copper is connected to negative terminal and made as cathode				
	101100 4 1100 HISTORY	d cathode are dipped in e	lectrolyte solu	ution containing 5-10% chromic	
	acid.	fat - b - ab t t- a - t-	J -4 250-	D.C.Current	1
	Service Both of the property of a property	ure of the both is maintaine	d at 35 c	ps: :::::::::::::::::::::::::::::::::::	
		lied between 0-50V.	0.401/	Copper Cathode	
		tes potential is increased to		Chromic Acid Chromic Acid Galidiating meetium	
	➤ After 20 minutes voltage is applied from 40-50V The voltage is kept constant at 50 V for five minutes.				
	During this period, 2-8 micrometer thick aluminum oxide layer is obtained Reactions:				
	At anode:	2A1(s) +3 H ₂ O (1)		Al ₂ O ₃ (s) +6H++6e	
	At cathode:	6H+ +6e		3H ₂ (g)	1mark
	Over all reaction			Al ₂ O ₃ (s) + 3H ₂	Zillark

Name of the Course instructor	Dr. Chandrasekhar N
Signature	Marrow .
Signature of the HoD	(Dace !

PRINCIPAL SIET. TUMAKURU.

II Semester: II-Internal assessment test Sub: Engineering Chemistry (18CHE22) Date: 01-05-2020

Time: 90 minutes

Section: A & B

Max Marks: 30

No	te:	1.	Answer any TWO FULL questions choosing one full question from each unit.		
			Module-1	Marks	со
1	a)		oplain the determination of calorific value of solid fuel using Bomb alorimeter	(5)	CO 3
	b)	W	hat is Knocking of petrol engine? Explain the Mechanism of Knocking	(5)	co
	c)	Ex	xplain the construction, working and uses of Methanol – Oxygen fuel	(5)	co
			(OR)		
2	a)	Ex	eplain the construction, working and uses of Solid oxide fuel cell (SOFC)	(5)	CO :
	b)	Ex	oplain the construction and working of photovoltaic cell.	(5)	co:
	c)	M	alculate GCV and NCV of a fuel from the following data. lass of fuel =0.75g, W1= 2500 g, W_2 = 650 g, t_2 =27.2°C, t_1 = 24.0°C, % t_2 = 5% and S = 4.187 J/Kg/°C.	(5)	co

		Module-2	Marks	co
3	a)	Define Chemical fuel and explain the classification of Chemical fuels with examples.	(5)	CO 3
	b)	Write a note on a) Unleaded Petrol b) Power alcohol	(5)	CO 3
	c)	What is Biodiesel? How it is produced? Mention the advantages of Biodiesel	(5)	CO 3

4	a)	Define Calorific Value and Explain the types	(5)	CO 3
	b)	What are Fuel Cells? Mention the differences between the fuel cells and conventional cells	(5)	CO 3
9	c)	Explain the preparation of solar grade silicon by Union Carbide Process	(5)	CO 3

Name of the Course instructor	Dr. Chandrasekhar N
Signature	diament.
Signature of the HoD	Cocce !

PRINCIPAL SIET, TUMAKURU.

II semester: II-Internal assessment test

Date: 01-05-2020

Scheme of valuation Sub: Engineering Chemistry (18CHE22)

Q.No	Scheme of valuation	Marks
1. (a)	Explain the determination of calorific value of solid fuel using Bomb calorimeter	5Marks
	A small quantity of a fuel is weighed accurately (M Kg) and is placed in the Bomb. The bomb is placed in known amount water taken in a copper calorimeter. The initial temp of water is noted as a t_1^{0} C with the help of thermometer. Oxygen gas is pumped under pressure 20 to 25 atm through the O_2 valve provided. The fuel is ignited by passing electric current through the wires provided. As the fuel undergoes combustion and liberates heat, which is absorbed by surrounding water. The water is stirred continuously to distribute the heat uniformly and the final temp attained by water is noted t_2^{0} C. & from the data obtained the gross and net calorific values of the fuel can be calculated as $GCV = (W_1 + W_2) \times S \times \triangle t \times 4.187$ J/Kg M NCV = $GCV - 0.09 \times \%H_2 \times 587 \times 4.187$ J/Kg Share of the fuel can be calculated as $GCV = (W_1 + W_2) \times S \times \triangle t \times 4.187$ J/Kg All places of the fuel can be calculated as $GCV = (W_1 + W_2) \times S \times \triangle t \times 4.187$ J/Kg All places of the fuel can be calculated as $GCV = (W_1 + W_2) \times S \times \triangle t \times 4.187$ J/Kg All places of the fuel can be calculated as $GCV = (W_1 + W_2) \times S \times \triangle t \times 4.187$ J/Kg NCV = $GCV - 0.09 \times \%H_2 \times 587 \times 4.187$ J/Kg	1mark 3mark
(b)	What is Knocking of petrol engine? Explain the Mechanism of Knocking	5Marks
(0)	The explosive combustion of petrol and air mixture produces shock waves in I.C. engine, which hit the walls of the cylinder and piston producing a rattling sound is known as knocking. Mechanism of Knocking Beyond a particular compression ratio the petrol mixture suddenly burns into flame. The rate of flame propagation increases from 20 to 25m/s to 2500m/s, which propagates very fast,	1mark
	producing a rattling sound. The activated peroxide molecules decomposes to give number of gaseous products which produces thermal shock waves which hit the walls of the cylinder and piston causing a rattling sound which is known as knocking. The reactions of normal and explosive combustion of fuel can be given as follows taking ethane as an example	2mark
	$C_3H_6 + 3 \text{ M} \cdot O_2 \longrightarrow 2CO_2 + 3H_2O$ (Normal combration reaction) $C_3H_6 + O_3 \longrightarrow CH_3 \cdot O \cdot CH_3$ [Explosive combustion reaction] $CH_2 \cdot O \cdot O \cdot CH_3 \longrightarrow CH_3 \cdot CHO + H_3O$ $CH_3 \cdot CHO + 1 + O_2 \longrightarrow CH_3 \cdot CHO + CO_3 + H_3O$ $HCHO + O_3 \longrightarrow CO_2 + H_3O$	2mark
(c)	Explain the construction, working and uses of Methanol – Oxygen fuel cell	5Marks
	It consists of two electrodes made up of platinum as anode and cathode and in between the electrodes H ₂ SO ₄ is placed as a electrolyte. Methanol and H ₂ SO ₄ is supplied at the anode and pure oxygen gas is supplied at the cathode. The methanol is oxidized to CO ₂ & H ₂ O with the liberation of 1.20v of electrical energy. The cell reactions are as follows. At anode: CH ₀ OH + H ₂ O	3mark 1mark
		1mark
2. (a)	Explain the construction, working and uses of Solid oxide fuel cell (SOFC)	5Marks
	Solid oxide fuel contains solid <u>oxide</u> ceramic material as the <u>electrolyte</u> and operates at high temperature about 600°C -1000°C. The cathode is made up of porous Lanthanum Manganite (LaMnO ₃) doped with Strontium (Sr). The anode is made up of porous Nickel zirconia cermet (Ni-ZrO ₂) The anode and cathode are separated by Yttrium stabilized Zirconia (YSZ)	1mark

	Hydrogen gas is supplied at anode and oxygen gas is supplied at cathode	
	The cell reactions are	200
	At anode : H ₂ + 0 H ₂ O +2e ' ' !	-
	L or I was a	3mark
		Jillaik
	NCR : H ₂ + 1/ ₂ O ₂ + H ₂ O	3
	Final and I was United States	1mark
(b)	Explain the construction and working of photovoltaic cell.	5Mark
1-7	A typical silicon photovoltaic cell is composed of a thin wafer consisting of an ultra thin layer of	4mark
	phosphorus doped. (n-type) silicon on top of boron doped (p-type) silicon. Hence a p-n junction is	
	formed. A metallic grid forms one of the electrical current contacts of the diode and allows light to	
	fall on the semiconductor between the grid lines. An antireflective layer (TiO ₂ or silicon nitride)	
	between the grid lines increases the amount of light transmitted to the semiconductor. The cell's	
	other electrical contacts is formed by a metallic layer on the back of the solar cell.	
	When light radiation falls on the p-n junction diode, electron - hole pairs are generated by the	
	absorption of the radiation. The electrons are moves and collect at the n-type end and the holes	
	moves to p-type end. When these two ends are electrically connected through a conductor, there	
	is a flow of current between the two ends through the external circuit. Thus photoelectric current	
	is produced.	
		1 8
	Manager Name Name	11.5
		-
	Deput to 1 to 1	
	Francisco To Decomposition Administration	1mark
(c)	Calculate GCV and NCV of a fuel from the following data. Mass of fuel =0.75g, W1= 2500 g, W2 =	5Mark
1000	650 g, $t_2 = 27.2^{\circ}$ C, $t_1 = 24.0^{\circ}$ C, % $H_2 = 5$ % and $S = 4.187 \text{ J/Kg/°C}$.	
	$GCV = (W_1 + W_2) \times \triangle t \times S$	1mark
	M	
- 1	$= (2200+200) \times 10^{-3} \text{ kg} \times 3.02 ^{\circ}\text{C} \times 1 \times 4.187 \text{J/kg/}^{\circ}\text{C}$	1mark
	0.75 x 10 ⁻³ kg	1mark
	GCV = 40463.16 J/Kg	1mark
	NCV = GCV -0.09 x %H ₂ x 587 x 4.187	
_ 1	= 40463.16 J/kg - 0.09 x 5 x 587 x 4.187 J/kg	1mark
	= 40463.16 J/kg -1105.99 J/kg	
2 (-1	NCV = 39357.17 J/Kg Define Chemical fuel and explain the classification of Chemical fuels with examples.	5Mark
3.(a)	Chemical fuel and its classification	1mark
	A chemical fuel is defined as naturally occurring or artificially manufactured combustible	THIGH
	carbonaceous material which serves particularly as source of heat and light and also in few cases	
- 1	as a source of raw material.	
	Classification of fuels Fuels are classified into a two types.	
1	Based on their origin they are classified into	
	a) Primary fuels b) Secondary fuels.	
	a) Primary Fuels: There are naturally occurring fuels which serves as source of energy without any	
	chemical processing.	2mark
3	Ex: Wood, Coal, Crude oil, Natural gas, Peat, Lignite, Anthracite	5 mm (600)
	b) Secondary Fuels: - They are derived from primary fuels & serves as source of energy only after	
	subjecting to chemical processing.	A. San
	Ex: Charcoal, Coke, producer gas, Petrol, Diesel etc.,	2mark
	Bases on their physical state fuel are classified into	
	a) Solid b) Liquid c) Gaseous fuels.	
	al John of Eldrid Cl Oddeody (del).	

.

		7
(b)	Write a note on a) Unleaded Petrol b) Power alcohol	5Marks
	a) Unleaded Petrol:	
	The petrol, which contains antiknocking agent other than lead, is known	2mark
	as unleaded petrol.	
	Ex: MTBE is used, as an antiknocking agent in place of TEL or TML and the petrol is known	
	as unleaded petrol.	
	b) Power alcohol	
	A mixture of ethyl alcohol and gasoline blend, which can be used as fuel in	
	internal combustion engine, is known as power alcohol or gasohol.	Same
	Absolute alcohol is mixed with ether, benzene etc compounds and one	3mark
	volume of this is mixed with four volumes of petrol and is used as a fuel.	
	Advantages:	
	> The power out put is good.	
	> It has better antiknock property.	
EA	Ethanol is biodegradable; hence it is environmental friendly fuel.	
(c)	What is Biodiesel? How it is produced? Mention the advantages of Biodiesel	5Marks
	Biodiesel refers is a mono alkyl long-chain alkyl fatty acid esters (methyl, propyl or ethyl)	1mark
	esters which is produced by trans -esterification of vegetable oils or animal fats.	2
	Biodiesel is produced by trans-esterification of vegetable oil or animal fat by treating with any	3mark
	alcohol in presence of NaOH or KOH as catalyst. The most commonly used alcohol is methanol to	
	produce methyl esters (commonly referred to as Fatty Acid Methyl Ester (FAME) as it is the cheapest alcohol available. Ethanol can be used to produce an ethyl ester (commonly referred to	
	as Fatty Acid Ethyl Ester(FAEE) biodiesel.	
	CH2-COOR CH3COOR CH3COH	
	CH - COOR + 3CH2OH NOR KOH CH2COOR + CHOH	
	CH ₂ -COOR [®] CH ₂ COOR CH ₂ OH Fet / oil Biodiesel Giyoerol	
	Advantages	
	Renewable:	
	Less noxious, non-toxic	1mark
	Unlike petroleum diesel, it is biodegradable.	
	Simple to make, and can be produced from waste vegetable oil.	
	Simple to make, and can be produced from waste vegetable on.	
4. (a)	Define Calorific Value and Explain the types	5Marks
	Calorific value is defined as the amount of heat liberated when a unit mass of fuel is burnt	1mark
4	completely in presence of air or oxygen.	
	Calorific value is of two types as follows:-	
	Higher calorific value. (HCV) or Gross calorific value. (GCV)	
4	Lower calorific value. (LCV) or Net calorific value. (NCV)	
	1) HCV: - It is the amount of heat liberated when a unit mass of fuel is burnt completely in the	Since.
	presence of air or oxygen and the products of combustion are cooled to room	2mark
	temperature. Here it includes the heat liberated during combustion and the latent heat of	
	steam. Hence its value is always higher than lower calorific value.	
	2) LCV: - It is amount of heat liberated when a unit mass of fuel is burnt completely in the	32 0
	presence of air or oxygen and the product of combustion are let off completely into air. It	2mark
	does not include the latent heat of steam. Therefore it is always lesser than HCV.	
	NCV = HCV - Latent heat of steam.	
	NCV = HCV - Latent heat of steam. = HCV -0.09X % H ₂ X 587 cal/g	
(b)	NCV = HCV - Latent heat of steam. = HCV -0.09X % H ₂ X 587 cal/g What are Fuel Cells? Mention the differences between the fuel cells and conventional cells	-
(b)	NCV = HCV - Latent heat of steam. = HCV -0.09X % H ₂ X 587 cal/g	5Marks 1mark

			-
	Conventional cell	Fuel cell	
	A battery stores the chemical reactants, usually metal compounds once used up you must recharge or throw away the battery.	 A fuel cell produces electricity three reactants stored externally and the device careused. 	The second secon
	2.Harmfull products are formed	2.Ecofriendly	
	Low efficiency of the energy conversion.	3. High efficiency of the energy conversion.	
	4. These can be chargeable	4. These can't be chargeable.	
(c)	Explain the preparation of solar grade silicon by Union	Carbide Process	5Mark
	The furnace consists of a crucible filled with quartz a is formed as follows. SiO ₂ + 2C(s) Si (l) +2CO (g) Silicon is formed as molten state and is tapped fr monoxide further oxidized to carbon dioxide and rele ii) Refining of silicon: The crude silicon obtained in the above method is lime/limestone (CaO/CaCO ₃). The less noble elements as their oxides. iii) Production of semiconductor grade silicon The metallurgical grade silicon obtained in the above semiconductor grade silicon or polysilicon.	om the bottom of the furnace. The carbon ased into the atmosphere. taken in a large ladle and treated SiO ₂ and s than silica such as AI, Ca and Mg are oxidized	3mark
	The metallurgical grade silicon is treated with dry HCl small amount of tetrachlorosilane. The mixture is dist Si + 3 HCl HSiCl ₃ + H ₂ Si + 4 HCl SiCl ₄ + 2H ₂		1mark
	The tetrachloro silane (SiCl ₄) is reduced with hydrogen silane (HSiCl ₃). SiCl ₄ + H ₂	n at 1000°C in a reactor to get tri chloro	
	The tri chloro silane is then passed through fixed bed ion exchange resins catalysts to get Silicon hydride or		
	2HSiCl ₃		304
	3HSiCl ₂ SiH ₄ + 2 H ₂ SiCl ₃ Silicon hydride or silane is further purified by distil heated silicon seed rods. Silane gets pyrolysed to form		

Name of the Course instructor	Dr. Chandrasekhar N
Signature	(gapoo)-
Signature of the HoD	018000x

+ Si + 2H2

SiH4-

II Semester: II-Online Internal assessment test

Sub: Engineering Chemistry (18CHE22)

Time: 02 Hours

Section: A & B

Date: 19-05-2020 Max Marks: 60

Note:	1.	Answer all the following questions.
		I .

			Marks	co
1	a)	Define free energy. Derive Nernst equation for single electrode potential.	(7)	CO 1
	b)	Explain Electroplating process of chromium? Give the reasons why chromium anodes are not used. Mention the applications.	(7)	CO 2
	c)	What voltage will be generated by a cell that consisting of an Iron electrode immersed in 0.5M FeSO ₄ solution and Copper electrode immersed in 1M CuSO ₄ solution at 298K. Given that E^0_{Fe} = -0.44V & E^0_{Cu} 0.34V. Write the cell representation and cell reactions.	(6)	CO 1

2	a)	What is corrosion? Illustrate electrochemical theory of corrosion taking iron as an example.	(7)	CO 2
	b)	Explain the determination sulphate content in water by gravimetric method	(7)	CO 4
	c)	Calculate GCV and NCV of a fuel from the following data. Mass of fuel =0.95g, W1= 2400 g, W2 = 250 g, t2 =29.2 $^{\circ}$ C, t1 = 25.3 $^{\circ}$ C, % H ₂ = 6% and S = 4.187 J/Kg/ $^{\circ}$ C.	(6)	CO 3

			Marks	CO
3	a)	Describe the synthesis of nanoparticles by Sol-gel method. Mention the applications.	(7)	CO 5
	b)	Explain the titration curve for mixture of strong acid and a weak acid with a strong base.	(7)	CO 5
2	c)	Define COD? In a COD test 30.6 cm ³ and 15.5 cm ³ 0.05 N FAS solution required for Blank and sample titration respectively. The volume of test solution used was 25 cm ³ . Solve the COD of the water sample solution.	(6)	CO 4

Dr. Chandrasekhar. N Course instructor

Dr. Chandrasekhar. N

HoD

Dr. Narendra Viswanath

PRINTIPAL SIET, TUNCEU

Principal

II semester:III-Online Internal assessment test

Date: 19-05-2020

Sub: Engineering Chemistry (18CHE22)

Q.No	Scheme of valuation	Mark
1. (a)	Derive Nernst equation for single electrode potential	
	Free energy: It is a thermodynamic function. It is defined as the amount of work that thermodynamic system can perform.	1mar
* 10	The change in free energy of a system is given by	
	$\triangle G = \triangle H - T \triangle S$	
1.0	ΔG, ΔG*	1mar
0.17	Reversible electrode reaction M ⁿ⁺ + ne ⁻ ↔ M	1mar
	$K_C = [M]/[M^{n+}]$	1mai
	$\Delta G = \Delta G^* + RTInK_c$	1ma
	Substitution	1mai
)	$E = E^{\circ} + \frac{0.0591}{n} \log \frac{[M]}{[M^{n+}]}$	1mar
(b)	Explain Electroplating process of chromium? Give the reasons why chromium anodes are not used. Mention the applications.	
	Plating bath: Chromic acid and H ₂ SO ₄ in 100:1 proportion.	1mar
	Temperature: 45-600C.	1ma
	Current Density: 100-200mA/Cm ² .	1ma
	Anode: Insoluble anodes Pb-Sb or Pb-Sn coated with PbO ₂ . Cathode: Object to be plated.	1ma
18	Chromium anodes are therefore not used in Cr plating for following reason.	1ma
00	Chromium metal passivates strongly in acid sulphate medium &	THIO
9 1	· Chromium anode gives rise to Cr (III) ions on dissolution. In presence of large	
	concentration of Cr (III) ions, a black Cr deposit is obtained.	
	Anodic reaction: $H_2Cr_2O_7 \longrightarrow Cr_2O_7^- + 2H^+ + 2e^-$	4
	Cathodic reactions $Cr_2O_7^- + 14H^+ + 6e^ \longrightarrow$ $2Cr + 7H_2O$ Overall reaction: $Cr_3^+ + 3e^ \longrightarrow$ Cr	1ma
	Applications:	
	a) Decorative chromium provides a durable finish on cycles, automobiles, furniture's,	
	air craft and surgical instruments etc.	
A	b) Hard Chromium is used in cutting tools, piston rings, cylinder liners, crankshafts of	1ma
2	marine & aero engines, bearings etc. c) Black Chromium is used in optical instruments, machine tools & electronic parts.	
	d) It is also used for non-glase finishes on automobiles, & as an efficient coating for	
	solar energy collectors.	
(c)	What voltage will be generated by a cell that consisting of an Iron electrode	
	immersed in 0.5M FeSO ₄ solution and Copper electrode immersed in 1M CuSO ₄	
	solution at 298K. Given that E ⁰ Fe = -0.44V & E ⁰ Cu 0.34V. Write the cell representation and cell reactions.	
	Cell representation : Fe Fe ⁺⁺ (0.5M) Cu ⁺⁺ (1M) Cu	1ma
	Cell reactions: At Anode: Fe-→Fe ²⁺ +2e-	
	At Cathode: Cu ⁺⁺ +2e- → Cu	1mai
	E ⁰ cell=E cathode-E anode	Tillgi
		1 mm
	=0.34-(-0.44)	1mar
	= 0.78 V	
	Formula $E = E^* + \frac{0.0591}{n} log \frac{[Mn+]cathode}{[M^n+]anode}$	1mar

72	Substitution E = $0.78 + \frac{0.0591}{2} \log \frac{[1]}{[0.5]}$	1mark
. (a)	Answer:0.7889 V What is corrosion? Explain the electrochemical theory of corrosion	T. Alexandria
	Corrosion is defined as the destruction or deterioration of a metal or its alloy and consequent loss of metal, caused due to direct chemical action or electrochemical reactions with its environment. —— Air	1mar
	Anodic area Cathodic area Iron metal	1mar
	Figure: Formation of minute galvanic cells consisting of anodic and Cathodic areas Anode: Fe Fe ²⁺ +2e-	1mar
	Cathode: reactions (Any two reactions) a) In acidic medium: 2H+ +2e- H ₂	20000
	b) In alkaline and in the absence of O ₂ : 2 H ₂ O + 2e- c) In neutral and aerated medium: 2H ₂ O + O ₂ + 4e 4OH 4OH	2mar
ы	Corrosion product : $2Fe^{++} + 4OH^{-}$ \longrightarrow $2Fe (OH)_2$ $2Fe (OH)_2 + O_2 + 2H_2O$ \longrightarrow $2 (Fe_2O_3. 3H_2O)$ rust.	1mar
(b)	Explain the determination sulphate content in water by gravimetric method	
2	boiling point. SO ₄ ² · + Ba ²⁺	3mar
	233.3 g BaSO ₄ contains 96.0g of SO ₄ ²⁻ W g of BaSO ₄ contains 96.3 X W g of SO ₄ ²⁻ = mg 233.3 Sulphate content = m X 1000 mg/L 200	2mar
(c)	W g of BaSO ₄ contains <u>96.3 X W g of SO₄^{2.} = mg</u> 233.3 Sulphate content = <u>m X 1000 mg/L</u>	2marl
(c)	W g of BaSO ₄ contains <u>96.3 X W g of SO₄^{2.} = mg</u> 233.3 Sulphate content = <u>m X 1000 mg/L</u> 200 Calculate GCV and NCV of a fuel from the following data. Mass of fuel =0.95g, W1= 2400 g, W2 = 250 g, t2 =29,2°C, t1 = 25.3°C, % H2 = 6%	1mark 1mark 1mark

¥

3.(a)	= 45550.15 J/kg - 1327.19 kJ/kg = 44222.81 J/kg Explain the synthesis of nanoparticles by Sol-gel method. Mention the	
100	applications.	2mar
	The Fire Cooling Reserved The Fire Cooling Rese	
- 1	In Sol-gel synthesis, either a metal salt or metal alkoxide is used as precursor (starting reactions) to synthesize nanoparticles of a metal oxide. First, a sol is prepared by dispersing precursors in a solvent. 2. Conversion of sol into gel Sol is further converted into a gel by hydrolysis and condensation of precursors. Hydrolysis and condensation reactions are initiated by addition of an acid or base as catalyst. Hydrolysis:	3mar
	M -OR + H ₂ O → M- OH + R-OH Condensation: M- OH + M -OR→ M- O-M+ R-OH	
18	Gel on aging for a known period of time, finally condenses to nano-scale clusters of metal hydroxides. 4. Removal of solvent	
	The solvent can be removed from gel by evaporative drying. 5. Heat treatment The obtained sample is heated at high temperature to from nanoparticles. Applications	
	It can be used in ceramics manufacturing processes, investment casting material, or as a means of producing very thin films of metal oxides for various purposes. Sol-gel derived materials have diverse applications in optics, electronics,	2mar
	energy, space, (bio) sensors, medicine (e.g. controlled drug release) and separation (e.g. chromatography) technology. 3. Other products fabricated with this process include various ceramic membranes for microfiltration, ultra filtration, nano-filtration, and	
(b)	Explain the titration curve for mixture of strong acid and a weak acid with a strong base.	
	 When a mixture of a weak acid (CH₃ COOH) and strong acid (HCl) is titrated against a strong base (NaOH), the conductance initially decreases uponadding NaOH to the acid mixture because of removal of highly mobile H⁺ ions of HCl to form unionized H₂O. 	1mar

	HCl + NaOH → NaCl + H ₂ O	
9	 The first end point corresponds to the neutralization of strong acid (HCL) as it is strong acid, it neutralized first because of its complete dissociation. 	1mark
	3. The second end point corresponds to the neutralization of weak acid (CH ₃ COOH) as the weak acid is neutralized after the strong acid because of it's partial dissociation. CH ₃ COOH + NaOH → CH ₃ COO + Na+ + H ₂ O	1mark
	 Further, addition of NaOH after the neutralization point the conductance increases due to the addition of OH ions. 	1mark
	 The point of intersection of two lines in the graph gives the equivalence points as shown in the below graph. 	1mark
	From the equivalence points the concentration of HCl and CH₃COOH can be determined.	1mark
	1	
)	Conductance	1mark
	V1 V2	
	Volume of NaOH	
(c)	Volume of NaOH ————————————————————————————————————	
(c)	Define COD? In a COD test 30.6 cm ³ and 15.5 cm ³ 0.05 N FAS solution required for Blank and sample titration respectively. The volume of test	2mark
465	Define COD? In a COD test 30.6 cm³ and 15.5 cm³ 0.05 N FAS solution required for Blank and sample titration respectively. The volume of test solution used was 25 cm³. Solve the COD of the water sample solution. COD is defined as the amount of oxygen in mg required for the complete chemical oxidation of total oxidisable matter present in a liter of sewage effluent by a suitable oxidizing agent such as acidified potassium dichromate. COD = N FAS x (a-b) x 8x1000	
(865)	Define COD? In a COD test 30.6 cm³ and 15.5 cm³ 0.05 N FAS solution required for Blank and sample titration respectively. The volume of test solution used was 25 cm³. Solve the COD of the water sample solution. COD is defined as the amount of oxygen in mg required for the complete chemical oxidation of total oxidisable matter present in a liter of sewage effluent by a suitable oxidizing agent such as acidified potassium dichromate. COD = N FAS x (a-b) x 8x1000 25 COD = 0.05 x (30.6-15.5) x 8x1000	1mark
(865)	Define COD? In a COD test 30.6 cm³ and 15.5 cm³ 0.05 N FAS solution required for Blank and sample titration respectively. The volume of test solution used was 25 cm³. Solve the COD of the water sample solution. COD is defined as the amount of oxygen in mg required for the complete chemical oxidation of total oxidisable matter present in a liter of sewage effluent by a suitable oxidizing agent such as acidified potassium dichromate. COD = N FAS x (a-b) x 8x1000	2mark 1mark 1mark

Dr. Chandrasekhar. Course instructor

Dr. Chandrasekhar. N

HoD

Dr. Narendra Viswanath Principal KURU

Semester: I

Internal assessment test: I

Date: 25-09-19

Sub: Engineering Chemistry (18CHE12)

Time: 90minutes

Section: C & D

Max Marks: 30

NOTE: Answer any TWO FULL questions.

1. (a) Derive Nernst equation for single electrode potential

(b) Explain the construction, working and advantages of Calomel electrode.

(c) Calculate the voltage of the cell Fe(S) / Fe⁺⁺ (0.01M) // Ag⁺ (0.1M) /Ag (S) at 298K.
Write the cell representation and cell reactions. Given E⁰ of Fe= -0.42V & E⁰ Ag=0.80V

(5+5+5)

(OR)

(a) Explain the construction and working Glass electrode

(b) What are electrolytic concentration cells? Explain with an example

(c) Explain the determination of PH using Glass electrode

(5+5+5)

3. (a) Explain the Sources, ill effects and control of Carbon monoxide air pollution

(b) Explain the Sources, ill effects and control of particulate matter pollution

(c) Explain the Sources, ill effects and control of Mercury pollution

(5+5+5)

OR

4. (a) Explain the Sources, ill effects and control of ozone depletion

(b) Explain the Sources, ill effects and control of Hydrocarbon pollution

(c) Explain the Sources, ill effects and control of Lead pollution

(5+5+5

PRINCIPAL SIET TUMAKURU

SHRIDEVI INSTITUTE OF ENGINEERING AND TECHNOLOGY (**) I semester: I-Internal assessment test

	0.1	1 3 4 4
Q.no	Scheme	Mark
1. (a)	Derive Nernst equation for single electrode potential	5Mar
		S
	The maximum work available from a reversible chemical process is equal to the maximum	Imark
	amount of electrical energy that can be obtained; it shows decrease in free energy.	
	Wmax = - AG	l
	Therefore $\Delta G - nFE$	
	E - AQ	Imark
	$\mathbf{g}_{n} = \mathbf{\Delta} \mathbf{G}^{n}$	
	Consider the following reversible electrode reaction,	l
	Mot + ne \ M	1 mark
	For the above reaction the equilibrium constant [Kc] can be written	
	**	
	$K_C = \frac{[M]}{[Me^+]}$	
	···· [M=+]	
	Kc and △G are related according to the following thermodynamic	
	eguation	Imark
	ΔG • ΔG° + RT in Kc+1	Tillar
	Dividing the equation 1 by - nF and Substituting the value of Kc,	1
	$\frac{\triangle G}{-nF} = \frac{\triangle G^{o}}{-nF} + \frac{RT \ln [M]/[M^{a+}]}{-nF} \longrightarrow 2$	
	Substituting the values of $\triangle G$ and $\triangle G^{\circ}$ in equation 3,	
	= nF = nF Equation 3 =>	
	E = E ⁰ + RT in [M**] When [M] = 1	
	nF	
	E = E° + 2.303RT log ₁₀ [Ma*] ——— Nemst equation	100 00
	Remst equation	1 mark
(b)	Explain the construction, working and advantages of Calomel electrode.	5Mar
		S
	Fig and Labeling	Imark
	Seal Darlege Explanation	3mark
	Reactions	1 mark
	Fathron with Seturated RDI Gotulien	
	Columnal abstracted	
	 Calomel electrode consisting of a glass container at the bottom of which mercury is 	
	placed and above which a layer of mercury and mercurous chloride (called calomel)	
	is placed	
	 3/4th of bottle is filled with saturated KCl solution. 	
	 Calomel Electrode potential depends on the concentration of chloride ions. 	
	 The calomel electrode acts as both anode and cathode depending upon the other 	
	electrode used.	12
	The platinum wire is used for electrical connections. Salt bridge is used to couple with	
	other half cell.	
	The calomel electrode can be represented as Hg (1) / Hg, Cl, (S) / C1	
	 The calomel electrode can be represented as Hg (l) / Hg₂ Cl₂ (S) / Cl When it acts as anode the electrode reactions is, 	

	 When it acts as cathode the electrode reaction is Hg₂Cl₂ + 2e⁻ → 2Hg + 2Cl⁻ 	
(c)	Calculate the emf of the cell Fe / Fe++ (0.01) // Ag+ (0.1) /Ag at 298K if standard electrode potentials of Fe and Ag electrodes are -0.42 and 0.8 V respectively.	5Mark
	$E^{0}cell = E^{0} cathode - E^{0} anode$ $= E^{0} Ag^{+}/Ag - E^{0} Fe^{++}/ Fe$	lmark
	= 0.8 - (-0.42) $= 1.22 V.$	1 mark
	Ecell = E°cell + 0.0591 log 10 [Mn*] at cathode [Mn*] at anode	lmark
	$= E^{0} \text{cell} + \underbrace{0.0591}_{n} \log 10 \underbrace{[Ag^{+}]^{2}}_{[Fe^{++}]}$ $= 1.22 + \underbrace{0.0591}_{2} \log 10 \underbrace{[0.1]^{2}}_{[0.01]}$	Imark
	= 1.22 + 0.02955 log 1 = 1.22 V.	Imark
2.(a)	Explain the Construction and working of Glass electrode?	
	These are the electrodes, which responds to specific ions only and develops a potential against those ions while ignoring the other ions present in the solution. Ex: Glass electrode	lmark
		lmark
	Ag/AgCl Electrode	1 mark
	Glass Stectrode	lmark
	Construction:	December 1
	Glass electrode is H ⁺ ions sensitive electrode	lmark
	It is widely used for pH determinations. It is consisting of a long glass tube at the bottom of which a thin and delicate glass bulb.	
	The glass bulb is made up of special type of glass (12 % Na ₂ O, 6% of CaO, 72% of SiO ₂) with low melting point and high electrical conductance	
	The glass bulb is filled with 0.1.M HCl solution. Ag / AgCl is used as a internal reference electrode.	
	A platinum wire is used for electrical contact.	
	The class electrode can be represented as Ag/AgCl(s) /0.1M (HCl) / Glass.	5Mark
2. (b)	What are electrolytic concentration cells? Explain with an example	S
	Fig and Labeling	1 mark
	Explanation	2mark
	Reactions	Imark
	Formula Formula	Imark
	 These are the galvanic cells consisting of same metal electrodes as anode and cathodes dipped in same electrolytic solution but are different in the electrolyte concentration. Ex: Consider the following concentration cell constructed by dipping two copper electrodes in Cuso₄ solutions of concentration M₂ molar and M₁ molar, where M₂M > 	
	M ₁ <i>M</i> .	

日 100 日 10

6		
	The two half-cell are internally connected by a salt bridge and externally connected by a metallic wire through voltmeter The electrode, which is dipped in less electrolytic concentration solution (M₁M) act as anode and undergoes oxidation. The electrode, which is dipped in more electrolytic concentration solution (M₂M) act as cathode and undergoes reduction. At anode: Cu(S) ← Cu²+ (M₁) + 2e² At cathode: Cu²+ (M₂) + 2e² ← Cu(S) Net Cell Reaction: Cu²+ (M₂) ← Cu²+ (M₁) E of cell = E cathode - E anode. E cell = (E⁰ + 0.0591 log [M2]) - (E⁰ + 0.0591 log [M1]) B cell = O.0591 log [M2] [M₂] [M₂]	
(C)	Explain the determination of PH using glass electrode?	5marks
	Fig and Labeling Explanation	1
	To determine pH of unknown solution the glass electrode is combined with secondary reference electrode such as calomel electrode and the glass - calomel electrode assembly is	1
	dipped in the solution whose pH is to be determined. The two electrodes are connected to potentiometer or pH riseter. The combined electrodes can be represented as. Hg(I) /Hg ₂ Cl ₂ (S)/Saturated KCI //solution of unknown PH/glass/0.1M HCl/AgCl (s)/ Ag The emf of the above cell is given by	1
	E cell = E Cathode - E Anode E cell = E Glass - E Calomel (since EGlass = E ⁰ G-0.0591 PH) E cell = E ⁰ G-0.0591 pH - E Calomel PH = E ⁰ Glass - E Calomel - E cell 0.0591	1
3.(a)	Explain the sources and ill effects and control of CO air pollution.	5marks
	CO is found in fumes produced any time you burn fuel in cars or trucks, small engines, stoves,	1
	lanterns, grills, fireplaces, gas ranges, or furnaces. CO can build up indoors and poison people and animals who breathe it.	1
	The most common symptoms of CO poisoning are headache, dizziness, weakness, upset stomach, vomiting, chest pain, and confusion. CO symptoms are often described as "flu-like." If you breathe in a lot of CO it can make you pass out or kill you. People who are sleeping or drunk can die from CO	1
	poisoning before they have symptoms. Limited burning of charcoal indoors. Burning charcoal – red, gray, black, or white – gives off CO. Do not use portable flameless chemical heaters indoors.	1
	Check or changing the batteries in CO detector every six months.	1
(b)	Explain the sources and ill effects and control of perticulate matter pollution.	5
	There are numerous natural processes injecting particulate matter into the atmosphere (800-2000 million tonnes each year). Examples are volcanic eruptions, blowing of dust and soil by the wind, spraying of salt and other solid particles by the seas and oceans, etc. The contributions from man-made activities are flyash from power elect.	1
	incomplete combustion processes.	. Th
	Statistics regarding man-made particulate pollution indicates that fuel combustions from stationary sources (coal, fuel oil, natural gas, wood) indicates that fuel combustions from stationary	1
	fires, structural fires, coal refuse burning and agriculty of the miscellaneous sources (forest	1
	each) the total particulate emission (200–450 million tonnes per year). In developed countries like particles (less than 3 μ).	1
(C).	Explain the sources and ill effects and control of mercury pollution.	5
A Company	Natural sources of mercury include volcanic eruptions and emissions from the ocean. Anthropogenic (human-caused) emissions include mercury that is released from fuels or raw materials, or from uses in products or industrial processes.	1

-120

- FEET

	skin and eyes.	1
	Some of the health effects exposure to mercury may cause include: irritation to the eyes, skin, and stomach; cough, chest pain, or difficulty breathing, insomnia, irritability, indecision, headache, weakness or exhaustion, and weight loss.	1
	Minamata Disease is a poisoning disease that nervous system, mainly central nervous system, is damaged by methylmercury. Avoid buying products that contain mercury except for fluorescent light bulbs. Fluorescent bulbs use	1
	less electricity than incandescent bulbs. Keep mercury-containing items out of the trash.	
(a)	Explain the sources and ill effects and control of ozone layer depletion.	5
	Ozone layer depletion is the gradual thinning of the earth's ozone layer in the upper atmosphere caused due to the release of chemical compounds containing gaseous bromine or chlorine from industries or other human activities."	1
	Sources: Chlorofluorocarbons Unregulated Rocket Launches	1
	Nitrogenous Compounds Natural Causes	1
	Ill effects: it has, Effects on Human Health and Animal Health Effects on Aquatic Ecosystems	1
	Effects on Air Quality Effects on Materials Controling:	1
	Avoid Using ODS Reduce the use of ozone depleting substances. E.g. avoid the use of CFCs in refrigerators and air conditioners, replacing the halon based fire extinguishers, etc. Minimise the Use of Vehicles	1
	The vehicles emit a large amount of greenhouse gases that lead to global warming as well as ozone depletion. Therefore, the use of vehicles should be minimised as much as possible.	
b)	Explain the sources and ill effects and control of hydrocarbon pollution.	5
	Contamination of hydrocarbon occurs due to toxic organic substances, petroleum, and pesticides which is a serious concern for the environment. Contamination caused by petroleum hydrocarbon is a matter of worry because these are harmful for various life forms.	1
	Anthropogenic sources Petroleum inputs Partial burning of fuels	1
	Fires of forest and grass Biosynthesis of hydrocarbons by marine or terrestrial organisms	1
	Diffusing from the petroleum source rocks, reservoirs, or mantle Some hydrocarbons can cause other effects, including coma, seizures, irregular heart rhythms or damage to the kidneys or liver. Examples of products that contain dangerous hydrocarbons include some solvents used in paints and dry cleaning and household cleaning chemicals.	1
	The remediation of hydrocarbon polluted wastewater can be achieved by three methods, which are phytoremediation, bioremediation and chemical remediation. Phytoremediation entails the use of plants to reduce the volume, mobility and toxicity of contaminants in soil and water.	1
(c)		5
	Lead-based paint and lead-contaminated dust in older buildings are common sources of lead poisoning in children. Other sources include contaminated air, water and soil. Adults who work with batteries, do home renovations or work in auto repair shops also might be exposed to lead. Signs and symptoms of lead poisoning in children include:	1
	High blood pressure Joint and muscle pain	1
	Irritability Loss of appetite	

-	Sluggishness and fatigue	1
	Abdominal pain	
	Vomiting	1
	Constipation	
	Hearing loss	1 3
	Seizures.	
	 Wash hands and toys. To help reduce hand-to-mouth transfer of contaminated dust or soil, wash your children's hands after outdoor play, before eating and at bedtime. Wash their toys regularly. 	1
	Controlling:	
	Clean dusty surfaces: Cleaning the floors.	1
	Run cold water.	
	Prevent children from playing on soil.	
	Eat a healthy diet.	

超速玩

PRINCIPAL SIET., TUMAKURU.

Date: 02-11-19

Semester: I

Internal assessment test: II

Sub: Engineering Chemistry (18CHE12)

Time: 90minutes

Section: C & D

Max Marks: 30

NOTE: Answer any TWO FULL questions.

1. (a) Explain the construction and working of Nickel - metal hydride Battery

(b) Explain the electrochemical theory of corrosion

(c) What is metal finishing? Mention the technological importance of metal finishing?

(5+5+5)

(OR)

2. (a) Explain the process of Anodizing of aluminum

(b) Explain the Differential metal corrosion with an example

(c) What is cathodic protection? Explain sacrificial anodic protection method

(5+5+5)

3. (a) Explain the determining sulphate content in water by gravimetric method

(b) Explain boiler corrosion

(c) Explain the desalination of water by Reverse osmosis method

(5+5+5)

OR

4. (a) Explain the determination of Fluoride content in water by colorimetric method

(b) Explain the sources, characteristics & disposal methods of solid waste management

(c) Define COD. In a COD experiment 25 cm³ of an effluent sample required 12cm³ 0.02 N FAS solution in sample titration and 29.8 cm³ 0.02 N FAS solution in blank titration. Calculate COD of the effluent sample. (5+5+5)

SHRIDEI INSTITUTE OF ENGINEERING AND TECHNOLOGY

Semester: I

Internal assessment test: II

Date: 02-11-19

Sub: Engineering Chemistry (18CHE12)

Time: 90minutes

Section: C & D

Max Marks: 30

NOTE: Answer any TWO FULL questions.

1. (a) Explain the construction and working of Nickel - metal hydride Battery

(b) Explain the electrochemical theory of corrosion

(c) What is metal finishing? Mention the technological importance of metal finishing?

(5+5+5)

(OR)

2. (a) Explain the process of Anodizing of aluminum

(b) Explain the Differential metal corrosion with an example

(c) What is cathodic protection? Explain sacrificial anodic protection method

(5+5+5)

3. (a) Explain the determining sulphate content in water by gravimetric method

(b) Explain boiler corrosion

(c) Explain the desalination of water by Reverse osmosis method

(5+5+5)

(OR)

4. (a) Explain the determination of Fluoride content in water by colorimetric method

(b) Explain the sources, characteristics & disposal methods of solid waste management

(c) Define COD. In a COD experiment 25 cm³ of an effluent sample required 12cm³ 0.02 N FAS solution in sample titration and 29.8 cm³ 0.02 N FAS solution in blank titration. Calculate COD of the effluent sample. (5+5+5)

PRINCIPAL SIET., TUMAKURU.

Semester: I

Internal assessment test: II

Date: 02-11-19

Sub: Engineering Chemistry (18CHE12)

Time: 90minutes	Section: C & D	Max Marks: 30

Q.No	Scheme of valuation	Marks
1. (a)	Explain the construction and working of Nickel - metal hydride Battery	5marks
	Diagram with labeling: Explanation Reactions At anode: MH + OH- At cathode: NiO (OH) + er + H ₂ O Ni (OH) ₃ + OH- Mater Result Applicate Stationary Constant opting Explanation At mode Mater Result Applicate Stationary	1mark 2mark
	NCR : MH + NiO [OH]	1mark
(b)	Explain the electrochemical theory of corrosion	5marks
0	Formation of minute galvanic cells Anode:Fe->Fe ²⁺ +2e- Cathode: reactions (Any two reactions)	1mark 1mark
	a) In acidic medium: 2H+ + 2e - H ₂ b) In alkaline and in the absence of O ₂ : 2 H2O + 2e- 2OH - + H ₂ c) In neutral and aerated medium: 2H ₂ O + O ₂ + 4e 4OH	2mark
	Corrosion product : 2Fe++ + 4OH - → 2Fe (OH) ₂ 2Fe (OH) ₂ + O ₂ + 2H ₂ O → 2 (Fe ₂ O ₃ . 3H ₂ O) rust.	1mark
(c)	What is metal finishing? Mention the technological importance of metal finishing?	5marks
	It is a process of modifying surface properties of metals by deposition of a layer of another metal or polymer on its surface, by the formation of an oxide film.	1mark
C,	Technological importance of metal finishing. Imparting the metal surface to higher corrosion resistance. Imparting improved wear resistance. Providing electrical and thermal conducting surface. Imparting thermal resistance and hardness. Providing optical and thermal reflectivity.	4mark
2. (a)	Explain the process of Anodizing of aluminum	5marks
	Construction – Diagram with labeling Explanation: Pretreatment: The article be anodized is degreased and followed by electro polished Aluminum is connected to positive terminal and made as anode. Steel or copper is connected to negative terminal and made as cathode The anode and cathode are dipped in electrolyte solution containing 5-10% chromic acid. The temperature of the both is maintained at 35°c Voltage is applied between 0-50V.	1mark 3mark
	 ➢ First ten minutes potential is increased to 0-40V. ➢ After 20 minutes voltage is applied from 40-50V ➢ The voltage is kept constant at 50 V for five minutes. 	

Goont

(b)	During this period, 2-8 micrometer thick aluminum oxide layer is obtained Reactions: At anode: 2A1 [s] +3 H ₂ O [1]	1mark 5marks 1mark 3mark 1mark
(c)	2Fe (OH) ₂ + O ₂ + 2H ₂ O → 2(Fe ₂ O ₃ . 3H ₂ O) rust. What is cathodic protection? Explain sacrificial anodic protection method	5marks
(5)	Definition of Cathodic protection:	1mark
	Cathodic protection is a method in which the base metal to be protected from corrosion is	1mark
	made to act as cathodic by attaching more active anodic metal to it. Construction - diagram Explanation Construction - diagram Explanation Construction - diagram Explanation Construction - diagram According to the contract of pipe time Construction - diagram According to the contract of pipe time Construction - diagram According to the contract of pipe time Construction - diagram According to the contract of pipe time Construction - diagram Construction - diagram Construction - diagram According to the contract of pipe time Construction - diagram Construct	3mark
3.(a)	Explain the determining sulphate content in water by gravimetric method	5marks
	Principle: The sulphate ions in the water sample are precipitated by the addition of barium chloride solution to water sample acidified with hydrochloric acid & kept near the boiling point. SO ₄ ²⁻ + B a ²⁺	1mark
	Procedure: 1. Transfer 200ml of water sample to a beaker 2. Add conc. hydrochloric acid drop wise till to become just acidic. & add three drops in excess. 3. Boil the sample to reduce its volume to 50ml. 4. Add hot barium chloride solution (10 %) slowly with constant stirring until all the sulphate is precipitated. 5. Digest at its boiling temperatures for a few hours.	3mark
	 Filter through a gooch crucible & wash the precipitate with hot distilled water until the washings are free from chlorides. Dry the precipitate & weigh barium sulphate. Calculation: Weight of BaSO4 be W g 233.3 g BaSO4 contains 96.0g of SO42- W g of BaSO4 contains 96.3 X W g of SO42- = mg 233.3 Sulphate content = m X 1000 mg/L 	1mark
(ii	200	1
(b)	Explain boiler corrosion	5marks
	Boiler corrosion is a decay process in which the boiler surface gets degraded by the attack of feed water. It is caused due to the presence of dissolved gases such as oxygen and carbon dioxide in boiler feed water. Raw water generally has about 8-9 ppm of dissolved oxygen. Oxygen levels of more than 7 ppm cause boiler corrosion, and so have to be kept in check. The dissolved oxygen can	2mark

Mory

attack the iron in the boiler and produce rust. $4Fe+2H_2O+O_2 \rightarrow 4Fe(OH)_2$ 2mark $4Fe(H)_2+O_2\rightarrow 2[Fe_2O_3. 2H_2O]$ Rust Carbon dioxide is found in the boiler water either from air or due to the presence of residual temporary hardness. Ca(HCO₃)₂→CaCO₃+ CO₂,H₂O $Mg(HCO_3)_2 \rightarrow Mg(OH)_2 + CO_2$ It dissolves in water to produce carbonic acid, which is slightly acidic and corrosive in nature. $H_2O+CO_2\rightarrow H_2CO_3\rightarrow H^*HCO_3$ When the boiler water pH drops below 8.5, corrosion may occur due to acidic nature of feed water. The acid may get formed due to the presence of magnesium compounds in the feed water. 1mark $MgCl_2 + 2H_2O \rightarrow Mg (OH)_2 + 2HCl$ This acid may then attack the boiler to form rust: Fe+2HCI→ FeCl₂+H₂ FeCl₂+2H₂O→ Fe (OH)₂+2HCl Explain the desalination of water by Reverse osmosis method 5marks 4mark Reverse osmosis is the process of forcing a solvent from a region of high solute concentration through a semi permeable membrane to a region of low solute concentration by applying a pressure in excess of the osmotic pressure A reverse osmosis unit consists of a pre flirtation unit which removes fine sediments of the water, reverse osmosis membrane to remove all the molecules like Na, Ca, Mg, bacteria viruses nitrates, heavy metals etc, and a vessel for storing water & a high pressure pump. The membranes are generally made up of cellulose acetate or nylon and are usually fabricated in a cylindrical shape. The seawater or brackish water is pressurized against one surface of the membrane, causing transport of salt-depleted water across the membrane and emergence of potable drinking water from the low-pressure side 1mark Explain the determination of Fluoride content in water by colorimetric method 5marks 4. (a) Principle: 1mark Under acidic conditions, fluorides react with Zirconium SPANDNS solution & the color of SPADNS reagent gets bleached. Bleaching is a function of fluoride ions & is directly proportional to the concentration of fluoride ions. Procedure: Transfer the given standard Sodium fluoride (NaF) solutions (2mg/L) to a burette and draw out 2.5, 5.0, 7.5, 10.0 and 12.5 cm³ of the solution into 100 cm³ volumetric flasks. 4mark Add 1 drop of NaAsO2 solution (0.5%) to remove any residual chlorine to each of the standard solutions. Add 10ml of Zirconyl- SPANDNS reagent to each flask and dilute to 100ml with distilled water and mix well

		Prepare a blank solution by adding 10ml SPANDNS solution in to 100 ml standard volumetric flask and add HCl solution (7ml conc. HCl diluted to 10ml) and make up to the mark. Use this blank solution to set zero in the colorimeter at 570nm. Take suitable aliquot of water sample as test solution, add 1 drop of NaAsO ₂ solution (0.5%) to remove any residual chlorine. Add 10ml of Zirconyl- SPANDNS reagent and dilute to 100ml with distilled water. Read the optical density of bleached color at 570 nm in the colorimeter. Draw a calibration curve by plotting concentration of Sodium fluoride versus absorbance and calculate the concentration of Fluoride ions.	
	(b)	Explain the sources, characteristics & disposal methods of solid waste management	5marks
The same of the sa		Sources: Residential solid waste management: Residence and homes where people live in large number generates major solid garbage waste which includes food waste, plastic waste, paper waste, lather waste, metal waste. Unused clothes, oils etc Characteristics of solid waste: Physical Characteristics: The following physical characteristics are measured which helps for the disposal of solid waste. a) Density of solid b) Moisture content in the solid waste c) Size distribution of the material Chemical Characteristics: a) Carbohydrate content b) Lipid content c) Protein content d) Natural fibrous content	2mark 2mark
		Disposal of solid waste: The solid waste can be disposed from the following methods. 1) Land fill: It is the oldest method of solid waste management which includes disposal of garbage in unused land on remote areas. 2) Composting: The biodegradable solid waste is subjected to microbial decomposition to produce compost which can be used as organic fertilizer for the plants	1mark
	(c)	Define COD. In a COD experiment 25 cm ³ of an effluent sample required 12cm ³ 0.02 N FAS solution in sample titration and 29.8 cm ³ 0.02 N FAS solution in blank titration. Calculate COD of the effluent sample.	5marks
		COD is defined as the amount of oxygen in mg required for the complete chemical oxidation of total oxidisable matter present in a liter of sewage effluent by a suitable oxidizing agent such as acidified potassium dichromate. COD = N FAS x (a-b) x 8x1000	
		V COD = 0.02 x (29.8-12) x 8x1000 25 COD = 113.92 mg of Oxygen/dm ³	1mark 1mark
		Mentioning units of COD (mg of Oxygen/dm³)	1mark 1mark

Domin Demoster

PRINCIPAL

SIET, THMAKURU.

SHRIDEVI

SHRIDEI INSTITUTE OF ENGINEERING AND TECHNOLOGY

Semester: I

Internal assessment test: III

Date: 17-12-19

Sub: Engineering Chemistry (18CHE12)

Time: 90minutes

Section: C & D

Max Marks: 30

NOTE: Answer any TWO FULL questions.

- 1. (a) Explain the determination of calorific value of solid fuel using Bomb calorimeter.
 - (b) What is Knocking of petrol engine? Explain the Mechanism of Knocking
 - (c) Explain the construction and working of Methanol Oxygen fuel cell.

(5+5+5)

(OR)

- 2. (a) Explain the congruction and working of Solid oxide fuel cell (SOFC)
 - (b) Explain the construction and working of photovoltaic cell.
 - (c) Calculate GCV and NCV of a fuel from the given data. Mass of fuel =0.65g, W_1 = 2800g, W_2 = 700 g, t_2 =27.2°C, t_1 = 23.4°C, % H_2 = 1.5 and S = 1 cal/g/°C. (5+5+5)
- 3. (a) Explain Theory, Instrumentation and applications of Flame Photometry.
 - (b) Explain the titration curve for mixture of strong acid and a weak acid with a strong base
 - (c) Explain Properties and applications of Graphenes.

(5+5+5)

(OR

- (a) Explain theory, instrumentation and applications of Colorimetry.
 - (b) Explain the synthesis of nanoparticles by Sol-gel method.
 - (c) Explain Properties and applications of fullerenes.

(5+5+5)

PRINCIPAL

SIET., TUMAKURU

() () ...

Date: 17-12-19

I semester: III-Internal assessment test

Scheme of valuation Sub: Engineering Chemistry (14CHE22)

Q.No	Scheme of valuation	Marks
1. (a)	Explain the determination of calorific value of solid fuel using Bomb calorimeter.	5Marks
	A small quantity of a fuel is weighed accurately (M Kg) and is placed in the Bomb. The bomb is placed in known amount water taken in a copper calorimeter. The initial temp of water is noted as a t ₁ °C with the help of thermometer. Oxygen gas is pumped under pressure 20 to 25 atm through the O ₂ valve provided. The fuel is ignited by passing electric current through the wires provided. As the fuel undergoes combustion and liberates heat, which is absorbed by surrounding water. The water is stirred continuously to distribute the heat uniformly and the final temp attained by water is noted t ₂ °C. & from the data obtained the gross and net calorific values of the fuel can be calculated as $GCV = (W_1 + W_2) \times S \times \triangle t \times 4.187 \qquad J/Kg$ Beckmann's thermometer Copper calorimeter Stainless steet bomb **Mg fuse wire** **Stainless steet crucible** **Pred sample**	1mark 3mark
	Bomb Calorimeter	
(۵.	What is Knocking of petrol engine? Explain the Mechanism of Knocking	5Marks
	The explosive combustion of petrol and air mixture produces shock waves in I.C. engine, which hit the walls of the cylinder and piston producing a rattling sound is known as knocking. Mechanism of Knocking Beyond a particular compression ratio the petrol mixture suddenly burns into flame. The rate of flame propagation increases from 20 to 25m/s to 2500m/s, which propagates very fast, producing a rattling sound. The activated peroxide molecules decomposes to give number of gaseous products which produces thermal shock waves which hit the walls of the cylinder and piston causing a rattling sound which is known as knocking. The reactions of normal and explosive combustion of fuel can be given as follows taking ethane as an example $C_2H_6 + 3 \ H_2 \ O_2 \rightarrow 2CO_2 + 3H_2O \ [Normal combustion reaction]$ $C_2H_6 + O_2 \rightarrow CH_3 \cdot CH_3 $	1mark 2mark 2mark
1	HCHO + O₂ → CO₂ + H₂O	
14)	Explain the construction and working of Methanol – Oxygen fuel cell	5Marks
	It consists of two electrodes made up of platinum as anode and cathode and in between the electrodes H ₂ SO ₄ is placed as a electrolyte. Methanol and H ₂ SO ₄ is supplied at the anode and pure oxygen gas is supplied at the cathode. The methanol is oxidized to CO ₂ & H ₂ O with the liberation of 1.20v of electrical energy. The cell reactions are as follows. At anode: CH ₃ O H + H ₂ O	3mark 1mark
		1mark
2. (a)	Explain the construction and working of Solid oxide fuel cell (SOFC)	5Marks
	Solid oxide fuel contains solid <u>oxide</u> ceramic material as the <u>electrolyte</u> and operates at high temperature about 600°C -1000°C.	1mark

[] [[20] (20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20]	3mark
	1mark
At anode : H ₂ + 0 H ₂ O +2e	
At cathode : Vo Oa + 2er	On.
	nu .
Fuel and Water Gases	
Explain the construction and working of photovoltaic cell.	5Marks
	4mark
[Harrison Free Programme Harrison Harr	
formed. A metallic grid forms one of the electrical current contacts of the diode and allows light to	
fall on the semiconductor between the grid lines. An antireflective layer (TiO ₂ or silicon nitride)	
between the grid lines increases the amount of light transmitted to the semiconductor. The cell's	
other electrical contacts is formed by a metallic layer on the back of the solar cell.	177
HERE HERE HERE HERE HERE HERE HERE HERE	70
is produced.	
And Particulation States and Stat	+
Concretion # 1	de la
T (Automatical)	STATE OF
	1mark
Calculate GCV and NCV of a fuel from the given data. Mass of fuel =0.65g, W ₁ = 2800g,	5Marks
$W_2 = 700 \text{ g}, t_2 = 27.2^{\circ}\text{C}, t_1 = 23.4^{\circ}\text{C}, \text{ % } H_2 = 1.5 \text{ and } S = 1 \text{ cal/g/°C}.$	
$GCV = (W_1 + W_2) \times \triangle t \times S$	1mark
M	
= $(2800 + 700) \times 10^{-3} \text{kg} \times (27.2 - 23.4)^{\circ} \text{C} \times 1 \times 4.187 \text{ J/Kg/°C}$	1mark
1 18508 0008077600000000000000000000000000000	1mark
F 10 2007 (A) 10 10 10 10 10 10 10 10 10 10 10 10 10	
	1mark
	1mark
	Lillaik
A CONTRACTOR OF THE PARTY OF TH	5Marks
	4mark
different wavelengths when atoms are excited in a flame. Such spectra consist of emission lines	
1. Flame: A burner that provides flame and can be maintained in a constant form and at a constant	
temperature.	
2. Nebuliser and mixing chamber: Helps to transport the homogeneous solution of the substance	
into the flame at a steady rate.	
extraneous emissions.	
4. Photo detector: Detect the emitted light and measure the intensity of radiation emitted by the	
flame. That is, the emitted radiation is converted to an electrical signal with the help of photo	
detector. The produced electrical signals are directly proportional to the intensity of light	
	At cathode: \(\frac{1}{2}\) \(\text{Q} \) \(2 + 2\) \(\text{P} \) \(\text{P}

	 To Determine the availability of alkali and alkaline earth metals in soil. To Determine Na* and K* ions in body fluids. 	
(6)	3. In the analysis of soft drinks, fruit juices and alcoholic beverages etc	1mark
(b)	Explain the titration curve for mixture of strong acid and a weak acid with a strong base.	5Mark
	 When a mixture of a weak acid (CH₃ COOH) and strong acid (HCI) is titrated against a strong base (NaOH), the conductance initially decreases uponadding NaOH to the acid mixture because of removal of highly mobile H* ions of HCI to form unionized H₂O. HCI + NaOH → NaCI + H₂O The first end point corresponds to the neutralization of strong acid (HCL) as it is strong acid, it neutralized first because of its complete dissociation. The second end point corresponds to the neutralization of weak acid (CH₃COOH) as the weak acid is neutralized after the strong acid because of it's partial dissociation. CH₃COOH + NaOH → CH₃COO' + Na* + H₂O Further, addition of NaOH after the neutralization point the conductance increases due to the addition of OH ions. The point of intersection of two lines in the graph gives the equivalence points as shown in the below graph. From the equivalence points the concentration of HCI and CH₃COOH can be determined. 	4mark
	The state of the CH The	1mark
(c)	Explain Properties and applications of Graphenes	5Mark
	 Graphene is an allotrope (form) of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice. It is the basic structural element of many other allotropes of carbon, such as graphite, diamond, charcoal, carbon nanotubes and fullerenes. It can be considered as an indefinitely large aromatic molecule, the ultimate case of the family of flat polycyclic aromatic hydrocarbons. Graphene has many uncommon properties. It is the strongest material ever tested, conducts heat and electricity efficiently, and is nearly transparent. Graphene shows a large and 	2mark
	nonlinear diamagnetism, greater than that of graphite, and can be levitated by neodymium magnets. Physical Properties	
	nonlinear diamagnetism, greater than that of graphite, and can be levitated by neodymium magnets. Physical Properties The strongest material ever measured. Up to 150X stronger than the equivalent weight of steel.	
	nonlinear diamagnetism, greater than that of graphite, and can be levitated by neodymium magnets. Physical Properties The strongest material ever measured. Up to 150X stronger than the equivalent weight of steel. Elastic as rubber and has the ability to stretch up to 120% of its length then recover its original shape. Extremely light weight, its said that a single sheet of Graphene covering a whole football field would weigh less than 1g. Very high electrical conductivity Only known substance that is completely impermeable to gas	2mark
	nonlinear diamagnetism, greater than that of graphite, and can be levitated by neodymium magnets. Physical Properties The strongest material ever measured. Up to 150X stronger than the equivalent weight of steel. Elastic as rubber and has the ability to stretch up to 120% of its length then recover its original shape. Extremely light weight, its said that a single sheet of Graphene covering a whole football field would weigh less than 1g. Very high electrical conductivity Only known substance that is completely impermeable to gas Graphene oxide reportedly has the ability to attract radioactive material Uses of Graphene	2mark
	nonlinear diamagnetism, greater than that of graphite, and can be levitated by neodymium magnets. Physical Properties The strongest material ever measured. Up to 150X stronger than the equivalent weight of steel. Elastic as rubber and has the ability to stretch up to 120% of its length then recover its original shape. Extremely light weight, its said that a single sheet of Graphene covering a whole football field would weigh less than 1g. Very high electrical conductivity Only known substance that is completely impermeable to gas Graphene oxide reportedly has the ability to attract radioactive material Uses of Graphene In early 2014 I.B.M announced that it had built the first integrated circuit for wireless devices. Today a tennis racquet with a graphene layer has been manufactured.	2mark
4 (2)	nonlinear diamagnetism, greater than that of graphite, and can be levitated by neodymium magnets. Physical Properties The strongest material ever measured. Up to 150X stronger than the equivalent weight of steel. Elastic as rubber and has the ability to stretch up to 120% of its length then recover its original shape. Extremely light weight, its said that a single sheet of Graphene covering a whole football field would weigh less than 1g. Very high electrical conductivity Only known substance that is completely impermeable to gas Graphene oxide reportedly has the ability to attract radioactive material Uses of Graphene In early 2014 I.B.M announced that it had built the first integrated circuit for wireless devices. Today a tennis racquet with a graphene layer has been manufactured. Graphene is an ingredient to conductive inks for printing circuitry.	1marl
4. (a)	nonlinear diamagnetism, greater than that of graphite, and can be levitated by neodymium magnets. Physical Properties The strongest material ever measured. Up to 150X stronger than the equivalent weight of steel. Elastic as rubber and has the ability to stretch up to 120% of its length then recover its original shape. Extremely light weight, its said that a single sheet of Graphene covering a whole football field would weigh less than 1g. Very high electrical conductivity Only known substance that is completely impermeable to gas Graphene oxide reportedly has the ability to attract radioactive material Uses of Graphene In early 2014 I.B.M announced that it had built the first integrated circuit for wireless devices. Today a tennis racquet with a graphene layer has been manufactured. Graphene is an ingredient to conductive inks for printing circuitry.	

	$I_o = I_a + I_r + I_t$ For a glass- air interface I_r is negligible. Therefore,	7
	$l_0 = l_a + l_t$	1
	It/Io = T called the transmittance log 1/T = log lo/It is called the absorbance or optical density A.	
	The relation between absorbance A, concentration c (Expressed in mol/liter)	
	And path length 1 (expressed in cm) is given by Beer Lambert's law.	
	A = log lo/lt = €Ct	
	Instrumentation: colorimeter contains the following components.	
	Light source: A tungsten lamp is used as light source for producing wavelength in the visible range	
	320-700 nm.	
	Monochromator: These are used to select a light of one wavelength (monochromatic light) and	3mark
	monochromatic light is sent through the sample.	Smark
	Cuvette: Transparent glass cuvette is used to for reading the OD of samples.	
	Detector: The detector detects the wavelength of light that has passed through the sample. Amplifier: The amplifier increases the signal so that it is easier to read against the background	
	noise.	
	Applications	
	Colorimeters are widely used to monitor the growth of a bacterial or yeast cultures.	1mark
	Used to measure and monitor the color in various foods and beverages.	Imark
(6)	Explain the synthesis of nanoparticles by Sol-gel method.	5Marks
(b)	1. Preparation of sol	1mark
	In Sol-gel synthesis, either a metal salt or metal alkoxide is used as precursor (starting reactions) to	Tillark
	synthesize nanoparticles of a metal oxide.	
	First, a sol is prepared by dispersing precursors in a solvent.	
	2. Conversion of sol into gel	
	Sol is further converted into a gel by hydrolysis and condensation of precursors. Hydrolysis and	
	condensation reactions are initiated by addition of an acid or base as catalyst.	
	Hydrolysis: -	- 24
	M -OR + H ₂ O → M- OH + R-OH	
100	Condensation:	4mark
	M- OH + M - OR→ M- O-M+ R-OH	HIIIdik
	3. Aging of a gel	
	Gel on aging for a known period of time, finally condenses to nano-scale clusters of metal	
	hydroxides.	
	4. Removal of solvent	
	The solvent can be removed from gel by evaporative drying.	
	5. Heat treatment	6 2
	The obtained sample is heated at high temperature to from nanoparticles.	1
(c)	Explain Properties and applications of fullerenes	5Marks
	A fullerene is any molecule composed of carbon in the form of a hollow sphere, ellipsoid, tube, and	3mark
	many other shapes. Spherical fullerenes are also called buckyballs, and they resemble the balls	
	used in <u>football</u> (soccer). Cylindrical ones are called <u>carbon nanotubes</u> or bucky tubes	
	Structure of C60 Fullerene	- V
	Contains 60 carbon atoms	1mark
	12 Pentagon rings and 20 Hexagon rings	
	Each pentagon ring is surrounded by 5 hexagon rings	1
	Each Hexagon ring is surrounded by 3 hexagon rings and 3 pentagon rings	
N.Y.		
	Applications of Fullerenes	
	1) Fullerenes C60 molecule is used as optical limiter.	1mark
	2) Polymer composite of C60 molecule is used in making organic photovolatic cells.	
	Polymer composite of C60 molecule is also used in photocopying aplications	

Down Sumpthe PRINCIPAL SIET., TUMAKURU

Shridevi Institute of Engineering and Technology, Tumkur-06

I Semester: II-Internal Assessment Test: November-2019 18PHY12-Engineering Physics

Time: 75 Min Max. Marks: 30

Note: Answer any two full questions.

a. Give the theory of damped oscillations.
 05 Marks

With a neat diagram explain the construction and working of Reddy shock tube.

06 marks

Mention the applications of shock waves.

04 marks

OR

- a. Discuss the theory of forced vibrations and hence obtain the expression for amplitude and Phase.
 06 marks
 - b. Derive the relation between bulk modulus (K), Young's modulus (Y) and Poisson's ration (σ).
- c. Calculate the force required to produce an extension of 1mm in steel wire of length O2m and diameter 1mm. (Y = 2 x 10¹¹ N/m²).

Dept. of Physics S.I.F.T., TUMKUR -6.

a.	Derive the expression for bending moment in terms moment of inertia.	05 marks
	Derive the expression for the depression and Y at the free end of a beam	

cantilever.

06 marks Calculate the torque required to twist a wire of length 1.5m, radius 0.0425 x 10⁻²m, through an angle ($\pi/45$) radian, if the rigidity modulus of its material is 8.3 x 10^{10} N/m^2 04 marks

04 marks

OR

- Derive the Expression for couple per unit twist of a solid cylinder. 05 marks Derive the relation between Young's modulus (Y), rigidity modulus (n) and Poisson's ration (σ) . 06 marks
 - Explain stress-strain diagram.

Shridevi Institute of Engineering and Technology, Tumkur-06 I Semester: II-Internal Assessment Test: November-2019

Scheme and Solution

Subject: Engineering Physics

Subject Code: 18PHY12

Ques No		Solution	Marks allotted
I	a	$\frac{d^{2}x}{dt^{2}} = -r\frac{dt}{dt} - rx$	òs
	b	Figure with Construction -03.	86
	С	mention the application you	04
2	a	$\frac{m d^{2}x}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) 02$ $\frac{dx}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx^{2}} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 02$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 2$ $\frac{dx}{dx} = -\frac{1}{4} \frac{dx}{dx} - \frac{1}{1}x + Fclu(Pt) - 2$ $\frac{dx}{dx} = -\frac$	06
	b	Figure + Foodonation $= 0$ cepto $K = \frac{1}{3(1-30)} (:: 0 = 8/d)$ os	
	c	Y=FL -1 Substitution - OF = 78.54 N - OZ	04

3	a	egto BM = 1 Earl 02	20
	b	Effere + Explanation _ 02 WHO Yo = WL3 OY	06
	c	C= TNPY 01 2L subabtubion, T = 1.98 x 10 4.Nm - 03	δþ
4	a	Pffure and Explanethon — 01 $L\phi = V\theta \otimes \phi = \frac{V\theta}{L} \qquad 01$ $F = T(2\pi VdV) = 01$ where $C = \left(\frac{\pi V\rho^{4}}{3L}\right) = 03$	20
	b	. Affure and Baplamentian -01 uro y=an (1+0) -05	96
	c	Figure - 01 Explonethon - 03	84

H.O.D Dept. of Physics S.I.E.T., TUMKUR -6.

PRINCIPAL SIET. TUMAKURU.

Shridevi Institute of Engineering and Technology, Tumkur-06 I Semester: III-Internal Assessment Test: December-2019 18PHY12-Engineering Physics

Time: 75 Min Max. Marks: 30

Note: Answer any two full questions.

a. Explain the merits of QFET.
 b. Derive Clausius- Mossotti equation.
 c. Calculate the probability of an electron occupying an energy level 0.02 eV below the

Fermi level at 200K.

04 marks

OR

2 a. Define Fermi energy. Explain the variation of Femi factor with temperature.

05 marks

- What is Hall Effect? Obtain the expression for Hall voltage in terms of Hall coefficient.
 06 marks
- c. The electron concentration in a semiconductor is 5 x 10¹⁷ m⁻³. Calculate the conductivity of the material if the drift velocity of electron is 350 ms⁻¹ in an electric field of 1000 Vm⁻¹ 04 marks

H.O.D Dept. of Physics S.I.E.T., TUMKUR -6.

Mul Jameston

SIET., TUMAKURU

State and prove the Gauss divergence theorem. 05 marks With a neat diagram derive an expression for numerical aperture and arrive at the b. condition for propagation. 06 marks The angle of acceptance of an optical fiber is 300 when kept in air. Find the angle of C. acceptance when it is in a medium of refractive index 1.33. 04 marks OR Derive the EM wave equation in terms of electric field using Maxwell's equation. 05 marks b. With neat diagrams explain the different types of optical fibers. 06 Marks Explain the types of fiber losses. 04 marks c.

4.0 H

Shridevi Institute of Engineering and Technology, Tumkur-06

I Semester: III-Internal Assessment Test: December-2019

Scheme and Solution

Subject: Engineering Physics

Subject Code: 18PHY12

Ques		Solution	Marks allotted
	а	Explanation 9-the month of OFET * Specific heart	06
j o	b	$H = \lambda e E i \qquad 01$ $P = N $	(CS)
	c	\$(E) = = (E-E) = 0.76-02	ъч
2	a	Definishion - 01 EXET (FLE) = 1 J - 03 E = EF (FLE) = 1/2, Varionia Righte - 01	05
	b	Definition - 01, Regare - 01 Upto VH = RH (BE) - 04	06
	c	On = Nelle 01 Questitution 01 UPTO ON= 0.028 /2m 02	oy

3	а	Stocksment outer April - 02 Upto \$\overline{7} \disks. \overline{1}{2} = \int \alpha \disks - 03	70
	b	Figure -01 who here $= \sqrt{n_1^2 - n_2^2} - 04$ $\sin \theta_1^* < H_1 + 01$. 06
-	c	operstration, $SFND_0 = N ^2 - N_0^2 - 01$ upto $\overline{ZE} = LE _{\overline{ZE}} = LD _{\overline{ZE}} + \overline{V}(\underline{SV})$ suphitution, $O_0 = 22^\circ - 03$	019
	а	Explanation of three types of opplicate of three types of street of the	20
	b	Explanation of three types of 3x2	06
	С	Exploration 4 three types 9-02 optices Fibrer	04

H.O.D Dept. of Physics S.I.E.T., TUMKUR -6.

PRINCIPAL SIET. TUMAKURU.

Shridevi Institute of Engineering and Technology, Tumkur-06

II Semester: I-Internal Assessment Test: March-2020 18PHY22-Engineering Physics

Time: 90 Min

Max. Marks: 30

Note: 1. Answer any two full questions.

2. Physical constants, Veloccity of light, c = 3 x 108 m/s,

Planck's constant, $h = 6.63 \times 10^{-34} \text{ JS}$, Mass of electron, $m_e = 9.1 \times 10^{-31} \text{ kg}$, Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$, Boltzmann constant, $K = 1.38 \times 10^{-23} \text{ J/K}$

 a. Derive the expression for energy Eigen value for an electron in a potential well of infinite depth. Hence obtain the normalized wave function. (CO3 07 Marks)

Explain requisites of laser system.

(CO4 04 Marks)

A particle of mass 0.5 MeV/c² has a kinetic energy 100 eV. Find the de-Broglie wavelength. (c is the velocity of light).

(CO3 04 Marks)

OR

 State Heisenberg's Uncertainity Principle. Using Uncertainity principle Explain non existence of electron in the nucleus. (CO3 06 Marks)

 Obtain an expression for energy density of radiation under equilibrium condition in terms of Einstein's co-efficient. (CO4 05 Marks)

An electron is bound in a one dimensional potential well of width 1Å, but if infinite
wall height. Find its energy values in the ground state, and also in the first excited
states. (CO3 04 Marks)

 Mention the three modes of vibration in CO₂ molecule. Describe the construction of the CO₂ laser and explain its working with the help of energy level diagram.

(CO4 07 Marks)

Mention the four properties of wave functions.

(CO3 04 Marks)

A spectral line of wavelength 5461 Å has a width of 10⁻⁴ Å. Evaluate the minimum time spent by the electrons in the upper energy state between the excitation and deexcitation processes.
 (CO3 04 Marks)

OR

a. Describe construction and working of a semiconductor laser. (CO4 05 Marks)

b. Set up time independent Schrodinger wave equation in one dimension.

(CO3 06 Marks)

An electron is confined to a box of length 10⁻⁹ m, calculate the minimum uncertainty in its velocity. (CO3 06 Marks)

H.O.D Dept. of Physics S.I.E.T., TUMKUR -6.

PRINCIPAL SIET. TUMAKURU.

1.0) maps of the particle
$$m = 0.5 \text{ MeV}[e^2]$$

Ninetic energy, $E = 100 \text{ eV} = 100 \text{ NIO}[19]$
 $m = 0.5 \times 10^5 \times 1.602 \times 10^9$
 $23 \times 10^8)^2$
 $3.9 \times 10^8 \times 10^{-31} \times 100 \times 1.602 \times 10^{-19}$
 $3.9 \times 1.34 \times 10^{-31} \times 100 \times 1.602 \times 10^{-19}$

Non Existance of electron in the atomic Nuclei $E = mc^2$
 $1 \times m^2 = m^2c^4$
 $1 \times m^2 = m^2c$

Rate of obscorption = Stimulated emission +

$$U_{y} = \frac{A_{a1} N_{2}}{(B_{10} N_{1} - B_{a1} N_{2})} - (1)$$

$$U_{\gamma} = \frac{A_{21}}{B_{21}} \left[\frac{\frac{1}{B_{12}} \frac{h^{\gamma}}{k^{\gamma}}}{\frac{B_{21}}{B_{21}}} - U \right]$$

$$\frac{\text{cly}}{\text{c}^3} = \frac{8\pi h \, \gamma^2}{\text{c}^3} \left[\frac{1}{e^{h \gamma/kT}} \right] \qquad (1).$$

$$Lay = \frac{A}{B \left[e^{hy/kT} - 1 \right]}$$

W.C.

Data: willth of the podential were a - in o - (1)

$$E = \frac{n^2 h^2}{8ma^2}.$$

04.

05

Botton:
$$P_{\text{cut}} = \frac{1}{2} \frac{1}{2}$$

H.b) Time independent 9chnodingeris wave equation in one dimension,
$$\lambda = \frac{h}{mv} \qquad \psi = he \qquad i(kx-\omega t) \qquad -(1)$$

$$\psi = \psi e^{-i\omega t} \qquad \frac{d^2\psi}{dx^2} = e^{-i\omega t} \frac{d^2\psi}{dx^2} \qquad -(1)$$

$$\frac{d^2\psi}{dx^2} = -\frac{i}{4\pi^2\psi} \frac{d^2\psi}{dx^2} \qquad -(1)$$

$$ke = -\frac{h^2}{9\pi^2m} \frac{1}{\psi} \frac{d^2\psi}{dx^2} \qquad -(1)$$

$$\frac{d^2\psi}{dx^2} + \frac{8\pi^2m}{h^2} (E^{-V}) \psi = 0 \qquad -(1)$$

$$\Delta x \Delta p \ge \frac{h}{4\pi}$$

$$\Delta x m \Delta v \ge \frac{h}{4\pi} \qquad \Delta v m$$

$$\Delta v \ge \frac{h}{4\pi} \Delta x m$$

$$\Delta v = 6.626 \times 10^{-34} \qquad -31.9$$

$$4 \times 3.142 \times 9.1810 \times 10$$

$$\Delta v = 5.8 \times 10^4 m 15 \qquad -(1)$$

H.O.D Dept. of Physics S.I.E.T., TUMKUR -6, PRINCIPAL SIET., TUMAKURU.

Shridevi Institute of Engineering and Technology, Tumkur-06 II Semester: II Online Internal Assessment Test: May-2020

II Semester: II Online Internal Assessment Test: May-2020 18PHY22-Engineering Physics

Time: 120 Min

Max. Marks: 60

Note: 1. Answer All Questions.

2. Physical constants, Veloccity of light, c = 3 x 10⁸ m/s,
Planck's constant, h = 6.63 x 10⁻³⁴ JS, Mass of electron, m_e = 9.1 x 10⁻³¹ kg,
Charge of electron, e= 1.602 x 10⁻¹⁹ C, Boltzmann constant, K = 1.38 x 10⁻²³ J/K

- a. Discuss the theory of forced vibrations and hence obtain the expression for amplitude and Phase. (CO1 08 Marks)
 - b. With a neat diagram explain the construction and working of Reddy shock tube.

(CO1 08 Marks)

c. The distance between the two pressure sensors in a shock tube is 150 mm. The time taken by a shock wave to travel this distance is 0.3 ms. If the velocity of sound under the same condition is 340 m/s. Find the Mach number of the shock waves.

(CO1 04 Marks)

Set up time independent Schrodinger wave equation in one dimension.

(CO3 08 Marks)

- Obtain an expression for energy density of radiation under equilibrium condition in terms of Einstein's co-efficient. (CO4 08 Marks)
- A particle of mass 940 MeV/c² has a kinetic energy 0.5 KeV. Find the de-Broglie wavelength. (c is the velocity of light).

(CO3 04 Marks)

- a. What is Hall Effect? Obtain the expression for Hall voltage in terms of Hall coefficient.
 (CO5 10 Marks)
 - Define Fermi factor & Discuss the variation of Fermi factor with Temperature and effect on occupancy of energy levels. (CO5 06 Marks)
 - Calculate the probability of an electron occupying an energy level 0.02eV above the Fermi level at 200K and 400K. (CO5 04 Marks)

HOD 18 5 20 H.O.D Dept. of Physics S.I.E.T., TUMKUR -6.

PRINCIPAL SIET. TUMAKURU.

Principal

Principal

Question Scheme & solutions MOREL Hambel Allecated Scel: Engineering Physica Seb. code ! 18PHy 22 10> Pesceltant force = - x dx - bx + Fsin (pt) - 2 43x + 21 gu + wox = F sin (Pt) x = a sin (pt - d) ax = apcox (P4-d) 8 = - ap2 sin (pt-d) a = (F/m) 14602+(w2-Pa) x = +an = 26P Hiverbection triver belien apprean and Diapheagen Down stream and blamater somm, longth 1m length of each Section soem -thickness of Diaphrospm o.1 mm Explanation of working c> $M = \frac{a}{a}$ $v = \frac{t}{t} = \frac{150 \times 163}{6.3 \times 163} = 500 \text{ m/s}$ " M = 500 = 1.47

Concept of Mr.
$$h = \frac{h}{p}$$
 with Explanation

 $p = A \frac{1}{p} (Dx - wt)$ with Explanation

Steph Envolved up to $\frac{1}{A^2} = -\frac{1}{k\pi^2 p} \frac{d^2p}{dx^2}$
 $\frac{d^2p}{k\pi^2 m} + \frac{k\pi^2 m}{p} \frac{d^2p}{dx^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} (E - V) = 0$

We have explanation up to $B_{10}M_1 = A_{21}M_2 + B_{21}M_3 = 0$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{k\pi^2 m}{k^2} \frac{(E - V) + 20}{k^2}$
 $\frac{d^2p}{dx^2} + \frac{d^2p}$

3 . How extent explanation Euplanotion 8 Probe En = BV S= BI Nuw EH = RH TB PH= 1 Defenition of Fermi factor T=0 for E> E f(E) =0 -2 8 ELEF (UF) = 1 E = Et (CE) = 0.2 ordinary temp. TTO fle)os

 $\frac{1}{e^{E-EF}} = \frac{1}{e^{E-EF}}$ $\frac{1}{e^{E-EF}} = \frac{1}{10.1594}$ $\frac{1}{e^{E}} = 0.24 \text{ at } 200 \text{ b}$ $\frac{1}{e^{E}} = \frac{1}{0.5797}$ $\frac{1}{e^{E}} = 0.36 \text{ at } 400 \text{ b}$

With all that

HOD HOD Dept. of Physics S.I.E.T., TUMKUR .6. Munum Freizas

Shridevi Institute of Engineering and Technology, Tumkur 06

2nd Semester: Online Assessment Test May 2020 18PHY22 - Engineering Physics

Time: 90min

Max.Marks: 30

Note: Answer any two full question

1 a. What are shock waves? Mention the characteristics and application of shocks waves.

(CO1 05 Marks)

b. What are the damped oscillation? Give the theory of damped oscillation and hence discuss the case of critical damping. (CO1 10 Marks)

OR

2 a. Define SHM. Mention the characteristics of SHM. Give one example of SHM. (CO1 05 Marks)

b. With a neat diagram, explain the construction and working of Reddy's (CO1 10 Marks) shock tube, Metion conservation of mass energy and momentum expressions.

3 a. What are the assumption of free electron theory (QFET)? Explain the merits of QFET. (CO5 05 Marks)

b. What is Hall effect ?Derive an expression for Hall voltage in terms of

(CO5 10 Marks)

Hall coefficient.

OR

4 a. What is Fermi energy? Derive an expression for Fermi energy at zero Kelvin for a metal. (CO5 10 Marks)

 Define Fermi factor, Explain the variation of Fermi factor with temperature.

(CO5 05 Marks)

H.O.D

Dept. of Physics
S.I.E.T., TUMKUR -6.

PRINCIPAL NAME

PRINCIPAL SIET., TUMAKURU.

$$x = A e^{dt} - \mathfrak{T}$$

$$\frac{d^{2}x}{dt^{2}} = A\alpha^{2}c^{dd}$$

$$C = \frac{x_{0}}{a} \left[1 + \frac{b}{\sqrt{b^{2} - \omega^{2}}} \right] - \mathfrak{T}$$

$$D = \frac{x_{0}}{a} \left[1 - \frac{b}{\sqrt{b^{2} - \omega^{2}}} \right] - \mathfrak{T}$$

$$(-b + \sqrt{b^{2} - \omega^{2}})^{+}$$

$$(-b - \sqrt{b^{2} - \omega^{2}})^{+}$$

$$\left[1 - \frac{b}{\sqrt{b^{2} - \omega^{2}}} \right] e$$

$$\left[1 - \frac{b}{\sqrt{b^{2} - \omega^{2}}} \right] e$$

constitue damping.
$$b^{2} = \omega^{2}$$
.

 $x = c e + b e$
 $x = b^{-b^{1}} \left[c e^{Et} + \partial e^{-Et} \right]$
 $x = b^{-b^{1}} \left[c e^{Et} + \partial e^{-Et} \right]$
 $x = b^{-b^{1}} \left[c e^{Et} + \partial e^{-Et} \right]$
 $x = b^{-b^{1}} \left[c e^{Et} + \partial e^{-Et} \right]$
 $x = e^{-Et} \left[(c+D) + (c-D) Et \right]$

2. 9 SHM is the oscillatory motion of a body whose the outstoring force is proportional to the negative of the displacement. — 1)

Explain characteristics of SHM — 3

Digital

Poussure

gauge

Diaphragm

Si [Si]

Doubles Section

C Doubles gas)

C test gas)

Piston

Opstouarn end.

Explain construction and working. (4)

conservation of mass: Pius Paus — 1

conservation of energy: hitus = hat ust

10.

Explain the menists of avantum force electoron throomy. - 3

skymous and notheast

5

10

$$\mathsf{EFo} = \left(\frac{\mathsf{h}^2}{\mathsf{8m}}\right) \left(\frac{\mathsf{3n}}{\mathsf{x}}\right)^{\mathsf{2/3}} - \boxed{1}$$

$$f(E) = \frac{1}{e^{\frac{E-E_F}{k\tau}}} - 0$$

ondinary temp T >0 (3) F x 3 P (3) P x 3 P (3) W 1 770K. 35 (33M) 14 f(E) EF E-

for E 7 EF f(E)=0 融 Hd, T=0 $E \angle E_F = f(E) = 1 - 0$ $E = E_F = f(E) = 0.5 - 0$

EPp (18) (18) = 193

EF0 15m 2/3

Deption Physics S.I.E.T., TUNKERESE.

William Milwin PRINCIPAL SIET., TUMAKURU.

À

Defination of from factor.

- (3)

14 78 5

3

Shridevi Institute of Engineering and Technology, Tumkur-06

II Semester B.E. Degree Online Preparatory Internal Assessment Examination, June- 2020 Engineering Physics

Time: 3 hrs

Max. Marks: 100

Answer any FIVE full questions, choosing ONE full question from each module.
 Physical constants, Velocity of light, c = 3 x 10⁸ m/s, Avagadro number
 N_A = 6.02 x 10²⁶ /K mole, Planck's constant, h = 6.63 x 10²⁴ JS, Mass of electron, m_e = 9.1 x 10²¹ kg, Charge of electron, e = 1.602 x 10²⁹ C, Boltzmann constant, K = 1.38 x 10²³ J/K

Module -1

- Define SHM. Mention the characteristics of SHM. Derive the deferential equation for SHM using Hook's law
 07 Marks
 - With a neat diagram explain the construction and working of Reddy shock tube. Mention the application of shock waves.
 - For the particle executing SHM, its acceleration is found to be 15cm/s² when it is at 3 cm from its mean position. Calculate time period.

OR

- a. Discuss the theory of forced vibrations and hence obtain the expression for amplitude and Phase.
 08 Marks
 - b. What are damped oscillations? Give the theory of damped oscillations.
 08 Marks
 - c. The distance between the two pressure sensors in a shock tube is 150 mm. The time taken by a shock wave to travel this distance is 0.3 ms. If the velocity of sound under the same condition is 340 m/s. Find the Mach number of the shock waves.
 04 Marks

Module -2

- Derive the relation between bulk modulus (K), Young's modulus (Y) and Poisson's ration (σ).
 08 Marks
- Derive the expression for the depression and Y at the free end of a beam of loaded cantilever.
 08 Marks
- c. Calculate the force required to produce an extension of 1mm in steel wire of length 2m and diameter 1mm. ($Y = 2 \times 10^{11} \text{ N/m}^2$) 04 Marks

OR

- a. Derive the Expression for couple per unit twist of a solid cylinder.
 08 Marks
- b. Derive the relation between Young's modulus (Y), rigidity modulus (n) and Poisson's ration (σ).
 08 Marks
- c. Calculate the angular twist of a wire of length 0.3 m and radius 0.2 x 10⁻³ m when a torque of 5 x 10⁻⁴ Nm is applied (Rigidity modulus of the material is 8 x 10¹⁰ N/m².
 04 Marks

00

PTO

H.O.D Dept. of Physics S.I.E.T., TUMKUR -6.

> PRINCIPAL SIET, TUMAKURU.

Module -3

5 With a neat diagram derive an expression for numerical aperture and arrive at the condition for a. propagation. 08 Marks State and prove the Gauss divergence theorem. 08 Marks b. The refractive indices of core and clad are 1.50 and 1.48 respectively in an optical fiber. Find C. the numerical aperture and angle of acceptance. 04 Marks With neat diagrams explain the different types of optical fibers. 08 Marks 6 a. Derive the EM wave equation in terms of electric field using Maxwell's equation. 08 Marks b. Find the attenuation in an optical fiber of length 500m when a light signal power 100mW C. emerges out of the fiber with a power 90mW. 04 Marks 7 Mention the three modes of vibration in CO2 molecule. Describe the construction of the CO2 a. laser and explain its working with the help of energy level diagram. 08Marks Set up time independent Schrodinger wave equation in one dimension. 08 Marks b. A particle of mass 0.5 MeV/c2 has a kinetic energy 100 eV. Find the de-Broglie wavelength. C. (c is the velocity of light). 04 Marks State Heisenberg's Uncertainity Principle. Using Uncertainity principle Explain non existence of electron in the nucleus. 08 Marks Obtain an expression for energy density of radiation under equilibrium condition in terms of b. Einstein's co-efficient. 08 Marks An electron is bound in a one dimensional potential well of width 1Å, but if infinite wall height. C. its energy values in the ground state, and also in the first excited states. 04 Marks Module -5 Give the assumptions of QFET. Explain the merits of QFET. 08 Marks a. What is Hall Effect? Obtain the expression for Hall voltage in terms of Hall co-efficient. b. 08 Marks Calculate the probability of an electron occupying an energy level 0.02 eV below the Fermi C. level at 200K and 400K. 04 Marks Define Fermi energy. Derive the expression for Fermi energy at 0 K for a metal. 10 08 Marks a. What polar and non-polar dielectrics with examples. Derive Clausius- Mossotti equation. b. 08 Marks The resistivity of intrinsic germanium at 27 °C is equal to 0.47 ohm-m. Assuming the electron C. and hole mobilities as 0.38 and 0.18 m²/V-Sec respectively. Calculate the intrinsic carrier density. 04 Marks

(DE. Sodan Coloh P.T) HOD & Physics

Quistion Number 1, a 15cm/s² = 15x10³m/s² (1)

$$x = 3cm = 3x \cdot 10^{3}m \cdot 10^{3}$$
 $x = 3cm = 3x \cdot 10^{3}m \cdot 10^{3}$
 $x = 3cm = 3x \cdot 10^{3}m \cdot 10^{3}$
 $x = 3cm = 3x \cdot 10^{3}m \cdot 10^{3}$
 $x = 3cm = 3x \cdot 10^{3}m \cdot 10^{3}$
 $x = 3cm = 3x \cdot 10^{3}m \cdot 10^{3}$
 $x = 3cm = 3x \cdot 10^{3}m \cdot 10^{3}$
 $x = 3cm = 3x \cdot 10^{3}m \cdot 10^{3}$
 $x = 3cm = 3x \cdot 10^{3}m \cdot 10^{3}m \cdot 10^{3}$
 $x = 3cm \cdot 10^{3}m \cdot 10$

Wright the explination of diagram. — (1)
Binding momentum = W (L-x)

$$4 = \frac{M}{4 \pm 6} \left[\frac{1}{2} - \frac{2}{6} \right] + c_2 - (1)$$

$$40 = \frac{W}{VTq} \left[\frac{L^3}{2} - \frac{L^3}{6} \right]$$

$$y_0 = \frac{WL^3}{3YEq}$$
 — (1)

$$Y = \frac{\omega L^3}{340} - (1)$$

08

3. C) Given data:
$$-\infty = 10^{3} \text{m}$$
, $L = 2 \text{m}$, $d = 10^{-3} \text{m}$ $Y = 2 \times 10^{11} \text{m/m}$
 $F = \frac{1}{2}$.

 $R = \frac{1}{2} = \frac{10^{-3}}{2} = 0.5 \times 10^{3} \text{m}$ — (1)

 $Y = \frac{FL}{ax}$ $Y = \frac{TR^{2}Yx}{L}$ — (1)

 $F = \frac{T}{4} \times (0.5 \times 10^{-3})^{2} \times 2 \times 10^{11} \times 10^{-3}$ — (1)

 $F = \frac{T}{4} \times 5 \times 10^{-3} \times 10^{11} \times 10^{-3}$ — (1)

 $F = \frac{T}{4} \times 5 \times 10^{-3} \times 10^{11} \times 10^{-3}$ — (1)

 $F = \frac{T}{4} \times 5 \times 10^{-3} \times 10^{-$

$$L p = re \quad \Theta \quad \phi = \frac{re}{L}$$

$$T = \frac{F}{a\pi r dr},$$

$$-(2) \quad T = \frac{nre}{L} \quad (1)$$

$$F = \frac{n\pi ne}{L} \quad r^{2} dr, \quad -(1)$$

$$= \frac{2\pi ne}{L} \quad r^{3} dr.$$

08

Twisting couple cutting on the entire cylinder.

= MRYO - (1)

$$C = \frac{KnR^4}{\partial L} - (1)$$

Total Extension along DP = DP, T (2+
$$\beta$$
)

Total Extension along DP = DP, T (2+ β)

PX = DP. T (2+ β)

PX = DP. T (2+ β)

PX = DP. T (2+ β)

Thursting $\frac{1}{2}$ (2+ β)

 $\frac{1}{2}$

H.b)

5.c)
$$n_1 = 1.50$$
, $n_{a2} = 1.48$. $NA = 3$, $\theta = 3$ — (1)

$$\nabla x \overrightarrow{d} = \overrightarrow{d} + \varepsilon = \overrightarrow{d} \varepsilon$$

6.6)

$$\Delta x = \frac{1}{4} = -\pi \frac{9H}{9H} - \pi$$

$$\Delta x = -\pi \frac{9H}{9H} - \pi$$

$$\Delta x = -\pi \frac{9H}{9H} - \pi$$

$$\Delta x = -\pi \frac{9H}{9H} - \pi$$

$$= \Delta(\frac{\partial A}{\partial x}) - \Delta_{SE} - \Omega$$

$$= \Delta(\frac{\partial A}{\partial x}) - \Delta_{SE} - \Omega$$

$$\Delta_5 = -m \epsilon \frac{94\sigma}{95} = m \frac{94}{22} + \Delta \left(\frac{8n}{8}\right) - (1)$$

$$\frac{d^2\psi}{dt^2} = -\omega^2 e^{-i\omega t} \qquad \qquad (1)$$

$$\frac{d^2\psi}{dx^2} = -\frac{\omega^2}{v^2} \psi \qquad \qquad (1)$$

$$\frac{1}{\lambda^2} = -\frac{1}{4\pi^2 \psi} \frac{d^2\psi}{dx^2} \qquad \qquad (1)$$

$$K_1E = \frac{p^2}{am} \qquad \qquad (1)$$

$$E = kE + pE$$

$$E = -\frac{h^2}{8\pi^2 m} \frac{1}{\psi} \frac{d^2\psi}{dx^2} + V \qquad \qquad (1)$$

$$\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E^{-N}) \psi = 0.$$

$$\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E^{-N}) \psi = 0.$$

$$nev/c^2 = 0.5 \times 10^6 \times (1.602 \times 10^5) \text{ TC}^2$$

 $m = (0.5 \times 10^6) \times (1.602 \times 10^5) \text{ TC}^2$

$$m = 0.5 \times 10^6 \times 1.602 \times 10^9 = 8.9 \times 10 \text{ kg}$$

$$(3 \times 10^6)^2 - (1)$$

$$\lambda = \frac{h}{\sqrt{a_{x} 8.9 \times 10^{-31} \times 100 \times 1.602 \times 10^{-19}}} = \frac{6.63 \times 10^{-31}}{\sqrt{a_{x} 8.9 \times 10^{-31} \times 100 \times 1.602 \times 10^{-19}}}$$

S.a). Wright the Statement of Heisenberg's Uncertainty.

Porinciple, — (2)
Non - existence of electron in the extornic Nucleus.

E= mcd. P= mv. ___ (1)

$$\frac{p_2 - mov}{\sqrt{1 - \frac{v^2}{G^2}}} \qquad \qquad (1)$$

$$p^2 = \frac{m^2c^2}{\left(1 - \frac{v^2}{c^2}\right)} = \frac{m^2v^2c^2}{\left(c^2 - v^2\right)}$$
 (1)

$$E^{2}-p^{2}c^{2} = m^{2}c^{4}(c^{2}-v^{2})$$

$$= c^{2}-v^{2}.$$
(1)

08.

$$U_{y} = \frac{Aa_{1}}{Ba_{1}} \left[\frac{1}{B_{1a}N_{1}} - 1 \right]$$

$$\frac{N_{1}}{N_{2}} = e^{-hY/kT}. \qquad \qquad (1)$$

$$U_{y} = \frac{Aa_{1}}{Ba_{1}} \left[\frac{1}{B_{1a}} e^{hY/kT} - 1 \right]. \qquad (1)$$

$$U_{y} = \frac{8\pi h y^{3}}{c^{3}} \left[\frac{1}{e^{hY/kT}} - 1 \right] \qquad (1)$$

$$\frac{B_{1a}}{Ba_{1}} = 1 \qquad B_{1a} = Ba_{1}. \qquad (1)$$

$$U_{y} = \frac{A}{Ba_{1}} \left[\frac{1}{e^{hY/kT}} - \frac{1}{e^{hY/kT}} \right] \qquad (1)$$

blaven deuter 8-
$$d = 10^{0} = 10^{10} \text{ m}$$
. $f = \frac{9}{8}$. Eq. (1)

$$E_1 = \frac{n^2 n^2}{8 \text{ ma}^2} = \frac{n^2}{8 \text{ ma}^2} = \frac{n^2}{8 \text{ ma}^2} = \frac{6.63 \times 10^{-34}}{2} = 37.64 \text{ eV}. -(1)$$

$$E_2 = E_1 = 37.64 \text{ eV}. -(1)$$

5. ()

Wright assumptions of QFET ____ (4) 9,a) Wought the merits of QFGT. ____ (4) 08 of how effect, Explination q, b) n-type moteorial. I — (2) BL = - Bev. , FH = - E EH EH = By. 08. VH = Brod. (1) J= I/Wd. I = neva 80 = I/wd / 0 = I/swd - (1) P= BI (1) to efficient RH: EH & JB - (1) Hall RH = EH JB RH = 1/9. -

9.() Given data:
$$E-6p = 0.03 \text{ eV}$$
,

 f° out: $ii)f(E)$ at $300k = 7$.

(ii) $f(E) = \frac{1}{e^{-6p}} = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iii) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = 0.24$.

 $= \frac{1}{1.1594} = 0.24$.

 $= \frac{1}{1.7855 + 1} = 0.36$.

(i)

(ii) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$
 $= \frac{1}{1.7855 + 1} = 0.36$.

(ii)

(iii) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 1.6 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1}{0.08 \times 10^{19}} = -(1)$

(iv) $f(E) = \frac{1$

$$n = \frac{8\sqrt{2} \times m^{3/2}}{h^{3}} \times \left[\frac{2}{3} + \frac{3}{3} + \frac{3}{3} + \frac{3}{3} + \frac{3}{3} + \frac{3}{3} \right]_{0}^{\text{Emax}}, \quad (1)$$

$$\left(E_{F_0}\right)^{3/2} = \frac{h^3}{\left(8m\right)^{3/2}} \left(\frac{3n}{\kappa}\right).$$
 (1)

$$E_{F0} = \left(\frac{h^2}{8m}\right) \left(\frac{3n}{\pi}\right)^{2/3} - (1)$$

diedectories with examples. ___ (3)

clausius - Mossotti equestion

Dipode - moment / unit volume = Nel

$$\frac{1}{Nde} = \frac{1}{\epsilon_0} \left[\frac{1}{(\epsilon_r - 1)} + \gamma \right] - (t)$$

$$\frac{(\varepsilon_{r-1})}{(\varepsilon_{r+2})} = \frac{Nde}{3\varepsilon_{0}} - 0$$

08.

08

doda: -10,0) Griven o: = 0.47 nm, le = 0.38 mx/vs uen = 0.18 ma/Ns. 04. To find out :- n:= 8 Pie (see + sen) 0.47 (1.602 × 10-19 (0.38 +0.18) g.3716X10 /m3

Dept. of Physics S.I.E.T., TUMKUR -6:

PRINCIPAL